Baggio, Rodolfo (2015): Looking into the future of complex dynamic systems.
Preview |
PDF
MPRA_paper_65549.pdf Download (173kB) | Preview |
Abstract
The desire to know and foresee the future is naturally bound to human nature. Traditional forecasting methods have looked after reductionist linear approaches: variables and relationships are monitored in order to foresee future outcomes with simplified models and to derive theoretical and practical implications. The limitations of this attitude have become apparent in many cases, mainly when dealing with dynamic evolving complex systems, that encompass numerous factors and activities which are interdependent and whose relationships might be highly nonlinear, resulting in an inherent unpredictability of their long-term behavior. Complexity science ideas are important interdisciplinary research themes emerged in the last few decades that allow to tackle the issue, at least partially. This paper presents a brief overview of the complexity framework as a means to understand structures, characteristics, relationships, and explores the most important implications and contributions of the literature on the predictability of a complex system. The objective is to allow the reader to gain a deeper appreciation of this approach.
Item Type: | MPRA Paper |
---|---|
Original Title: | Looking into the future of complex dynamic systems |
English Title: | Looking into the future of complex dynamic systems |
Language: | English |
Keywords: | forecasting, predictability, complex systems, nonlinear analysis, time series |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General > C00 - General C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C65 - Miscellaneous Mathematical Tools L - Industrial Organization > L8 - Industry Studies: Services > L83 - Sports ; Gambling ; Restaurants ; Recreation ; Tourism |
Item ID: | 65549 |
Depositing User: | Dr. Rodolfo Baggio |
Date Deposited: | 14 Jul 2015 06:48 |
Last Modified: | 26 Sep 2019 23:10 |
References: | Abraham, B. J., Ricardo, T. P., Oswaldo, M. M., & Isaias, B. P. A. (2011). Fractal behavior of the sales restaurant in a great tourism hotel. International Journal of Physical Sciences, 6(10), 2422-2431. Amaral, L. A. N., & Ottino, J. M. (2004). Complex networks - Augmenting the framework for the study of complex systems. The European Physical Journal B, 38, 147-162. Andersen, J. V., & Sornette, D. (2005). A mechanism for pockets of predictability in complex adaptive systems. Europhysics Letters, 70(5), 697-703. Aristotle. (IV century B.C.E.). Metaphysics (W. D. Ross, Trans.). Internet Classics Archive: http://classics.mit.edu/Aristotle/metaphysics.html. Baggio, R. (2008). Symptoms of complexity in a tourism system. Tourism Analysis, 13(1), 1-20. Baggio, R. (2013). Studying complex tourism systems: a novel approach based on networks derived from a time series. Proceedings of the XIV April International Academic Conference on Economic and Social Development, Moscow, April 2-5. Baggio, R. (2014). Complex tourism systems: a visibility graph approach. Kybernetes, 43(3/4), 445-461. Baggio, R., & Antonioli Corigliano, M. (2008). A practical forecasting method for a tourism organization. Proceedings of the International Conference: Knowledge as Value Advantage of Tourism Destinations, Malaga, 29-31 October. Baggio, R., & Klobas, J. (2011). Quantitative Methods in Tourism: A Handbook. Bristol, UK: Channel View. Baggio, R., & Sainaghi, R. (2011). Complex and chaotic tourism systems: towards a quantitative approach. International Journal of Contemporary Hospitality Management, 23(6), 840-861. Baggio, R., Scott, N., & Cooper, C. (2010). Improving tourism destination governance: a complexity science approach. Tourism Review, 65(4), 51-60. Bar-Yam, Y. (1997). Dynamics of Complex Systems. Reading, MA: Addison-Wesley. Barros, C. P., & Machado, L. P. (2010). The length of stay in tourism. Annals of Tourism Research, 37(3), 692-706. Boffetta, G., Cencini, M., Falcioni, M., & Vulpiani, A. (2002). Predictability: a way to characterize complexity. Physics Reports, 367-474. Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis. Forecasting and control (revised edition). San Francisco: Holden-Day. Campanharo, A. S. L. O., Sirer, M. I., Malmgren, R. D., Ramos, F. M., & Amaral, L. A. N. (2011). Duality between Time Series and Networks. PLoS ONE, 6(8), art. e23378. Cicero, M. T. (44 B.C.E.). De Divinatione (W. E. Falconer, Trans.). Perseus Digital Library: http://www.perseus.tufts.edu/hopper/text?doc=urn:cts:latinLit:phi0474.phi053.perseus-lat2:1.1. Clegg, R. G. (2006). A practical guide to measuring the Hurst parameter. International Journal of Simulation, 7(2), 3-14. Cole, S. (2009). A Logistic Tourism Model: Resort Cycles, Globalization, and Chaos. Annals of Tourism Research, 36(4), 689-714. DelSole, T., & Tippett, M. K. (2009a). Average predictability time. part I: Theory. Journal of the Atmospheric Sciences, 66(5), 1172-1187. DelSole, T., & Tippett, M. K. (2009b). Average predictability time. Part II: Seamless diagnoses of predictability on multiple time scales. Journal of the Atmospheric Sciences, 66(5), 1188-1204. Descartes, R. (1637). Discours de la méthode pour bien conduire sa raison, et chercher la verité dans les sciences. Leiden: De l’imprimerie de Ian Maire. Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association, 74, 427-431. Faulkner, B., & Russell, R. (2001). Turbulence, chaos and complexity in tourism systems: a research direction for the new millennium. In B. Faulkner, G. Moscardo & E. Laws (Eds.), Tourism in the 21st century: lessons from experience (pp. 328-349). London: Continuum. Faulkner, B., & Valerio, P. (1995). An integrative approach to tourism demand forecasting. Tourism Management, 16(1), 29-37. Folke, C., Hahn, T., Olsson, P., & Norberg, J. (2005). Adaptive governance of social-ecological systems. Annual Review of Environment and Resources, 30, 441-473. Framke, W. (2002). The Destination as a Concept: A Discussion of the Business-related Perspective versus the Socio-cultural Approach in Tourism Theory. Scandinavian Journal of Hospitality and Tourism, 2(2), 92-108. Frechtling, D. C. (1996). Practical Tourism Forecasting. Oxford: Butterworth-Heinemann. Galbraith, J. W., & Tkacz, G. (2007). Forecast content and content horizons for some important macroeconomic time series. Canadian Journal of Economics, 40(3), 935-953. Gharajedaghi, J. (2006). Systems Thinking: Managing Chaos and Complexity - A Platform for Designing Business Architecture (2nd ed.). Amsterdam: Elsevier. Gibbs, J. W. (1902). Elementary Principles in Statistical Mechanics. New York: Scribner. Giuliani, A., Colafranceschi, M., Webber, C. L. J., & Zbilut, J. P. (2001). A complexity score derived from principal components analysis of nonlinear order measures. Physica A 301, 567-588. Glynn, J., Perera, N., & Verma, R. (2007). Unit root tests and structural breaks: a survey with applications. Journal of Quantitative Methods for Economics and Business Administration, 3(1), 63-79. Guizzardi, A., & Mazzocchi, M. (2010). Tourism demand for Italy and the business cycle. Tourism Management, 31(3), 367-377. Hamilton, J. D. (1994). Time series analysis. Princeton: Princeton University Press. Hodrick, R. J., & Prescott, E. C. (1997). Postwar U.S. Business Cycles: An Empirical Investigation. Journal of Money, Credit and Banking, 29(1), 1-16. Holling, C. S. (1973). Resilience and Stability of Ecological Systems. Annual Review of Ecology and Systematics, 4, 1-23. Holling, C. S. (Ed.). (1978). Adaptive Environmental Assessment and Management. New York: John Wiley and Sons. Hurst, H. E. (1951). Long-term storage of reservoirs: an experimental study. Transactions of the American Society of Civil Engineers, 116, 770-799. Klein, J. L. (1997). Statistical visions in time: a history of time series analysis, 1662-1938. Cambridge: Cambridge University Press. Kopel, M. (1997). Improving the performance of an economic system: Controlling chaos. Journal of Evolutionary Economics, 7, 269-289. Kurtz, C. F., & Snowden, D. J. (2003). The new dynamics of strategy: Sense-making in a complex and complicated world. IBM Systems Journal, 42(3), 462-483. Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54, 159-178. Lacasa, L., Luque, B., Ballesteros, F., Luque, J., & Nuño, J. C. (2008). From time series to complex networks: the visibility graph. Proceedings of the National Academy of Sciences of the United States of America, 105(13), 4972-4975. Lacasa, L., & Toral, R. (2010). Description of stochastic and chaotic series using visibility graphs. Physical Review E, 82, art. 036120. Lansing, J. S. (2003). Complex Adaptive Systems. Annual Review of Anthropology, 32, 183-204. Laplace, P. S. (1814). Essai philosophique sur les probabilités. Paris: Courcier. Lee, J., & Strazicich, M. C. (2003). Minimum Lagrange Multiplier Unit Root Test with Two Structural Breaks. The Review of Economics and Statistics, 85(4), 1082-1089. Lewin, R. (1999). Complexity, life on the edge of chaos (2nd ed.). Chicago The University of Chicago Press. Lindgren, M., & Bandhold, H. (2003). Scenario planning: the link between future and strategy. New York: Palgrave McMillan. Linstone, H. A. (1999). Complexity Science: Implications for Forecasting. Technological Forecasting and Social Change, 62, 79-90. Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20, 130-141. Lyapunov, A. M. (1892). General problem on motion stability. Kharkov: Kharkovskoye Matematicheskoe Obshchestvo, vol. 11 [in Russian]. Mandelbrot, B., & Hudson, R. L. (2004). The (Mis)Behavior of Markets, A Fractal View of Risk, Ruin and Reward. New York: Basic Books. Maslow, A. (1970). Motivation and personality (2nd ed.). New York: Harper & Row. McHale, J. (1969). The Future of the Future: Where the New Technology Is Taking Us and What We Can Do About. New York: G. Braziller. Metes, D. V. (2005). Visual, Unit Root and Stationarity Tests and Their Power and Accuracy. Summer NSERC student report. Retrieved December, 2009, from http://www.stat.ualberta.ca/~wiens/pubs/metes.pdf. Michael, E. J. (2003). Tourism micro-clusters. Tourism Economics, 9(2), 133-145. Michailidis, A., & Chatzitheodoridis, F. (2006). Scenarios Analysis of Tourism Destinations. Journal of Social Sciences, 2(2), 41-47. Mielniczuk, J., & Wojdyłło, P. (2007). Estimation of Hurst exponent revisited. Computational Statistics & Data Analysis, 51, 4510-4525. Mills, T. C. (2011). The Foundations of Modern Time Series Analysis. Basingstoke, UK: Palgrave Macmillan. Newton, I. (1687). Philosophiae naturalis principia mathematica. London: jussi Societatus Regiae ac typis Josephi Streater. Nuñez, A. M., Lacasa, L., Gomez, J. P., & Luque, B. (2012). Visibility Algorithms: A Short Review. In Y. Zhang (Ed.), New Frontiers in Graph Theory (pp. 119-152). Rijeka, Croatia: InTech. OECD. (2000). Measuring the role of tourism in OECD economies. Paris: OECD. Olmedo, E., & Mateos, R. (2015). Quantitative characterization of chaordic tourist destination. Tourism Management, 47, 115-126. Phillips, P. C. B., & Perron, P. (1988). Testing for a Unit Root in Time Series Regression. Biometrika, 75, 335-346. Poincaré, H. (1883). Sur certaines solutions particulières du problème des trois corps. Comptes Rendus de l'Académie des Sciences, Paris, 97(251-252). Procaccia, I. (1988). Complex or just complicated? Nature 333, 498-499. Ravn, M. O., & Uhlig, H. (2002). On adjusting the Hodrick-Prescott filter for the frequency of observations. Review of Economics and Statistics, 84(1), 371-380. Rosenstein, M. T., Collins, J. J., & De Luca, C. J. (1993). A practical method for calculating largest Lyapunov exponents from small data sets. Physica D, 65, 117-134. Sainaghi, R. (2006). From contents to processes: Versus a dynamic destination management model (DDMM). Tourism Management, 27(5), 1053-1063. Sainaghi, R. (2012). Tourist expenditures: the state of the art. Anatolia, 23(2), 217-233. Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H., van Nes, E. H., Rietkerk, M., & Sugihara, G. (2009). Early-warning signals for critical transitions. Nature, 461(7260), 53-59. Schielicke, L., & Nevir, P. (2013). Comprehensive analysis of tornado statistics in comparison to earthquakes: intensity and temporal behaviour. Nonlinear Processes in Geophysics, 20(1), 47-57. Schreiber, T. (1999). Interdisciplinary application of nonlinear time series methods. Physics Reports, 308, 1-64. Small, M. (2005). Applied nonlinear time series analysis: applications in physics, physiology and finance. Singapore: World Scientific. Solomon, S., & Shir, B. (2003). Complexity; a science at 30. Europhysics News, 34(2), 54-57. Sornette, D. (2002). Predictability of catastrophic events: Material rupture, earthquakes, turbulence, financial crashes, and human birth. Proceedings of the National Academy of Sciences of the United States of America, 99(suppl 1), 2522-2529. Sornette, D. (2003). Why Stock Markets Crash. Princeton: Princeton University Press. Sornette, D., & Osorio, I. (2010). Prediction. In I. Osorio, M. G. Frei, H. Zaveri & S. Arthurs (Eds.), Epilepsy: The Intersection of Neurosciences, Biology, Mathematics, Engineering, and Physics (pp. 203-237). Boca Raton, FL: CRC Press. Sornette, D., & Ouillon, G. (2012). Dragon-kings: mechanisms, statistical methods and empirical evidence. The European Physical Journal-Special Topics, 205(1), 1-26. Sprott, J. C. (2003). Chaos and Time-Series Analysis. Oxford: Oxford University Press. Sriboonchitta, S., Chaitip, P., Balogh, P., Kovacs, S., & Chaiboonsri, C. (2011). On Tests for Long Memory Process Behavior of International Tourism Market: Thailand and India. , 5, . APSTRACT: Applied Studies in Agribusiness and Commerce, 5(3-4), 90-100. Strozzi, F., Zaldívar, J. M., Poljansek, K., Bono, F., & Gutiérrez, E. (2009). From complex networks to time series analysis and viceversa: Application to metabolic networks (European Commission Joint Research Centre Scientific Technical Report EUR 23947, JRC 52892). Luxembourg: Office for Official Publications of the European Communities. Retrieved July, 2012, from http://publications.jrc.ec.europa.eu/repository/handle/111111111/1018. Taleb, N. N. (2007). The Black Swan: The Impact of the Highly Improbable. New York, NY: Random House. von Bertalanffy, L. (1968). General System Theory: Foundations, Development, Applications. New York: George Braziller. Voß, J. P., & Bornemann, B. (2011). The politics of reflexive governance: challenges for designing adaptive management and transition management. Ecology and Society, 16(2), art.9. Waldrop, M. (1992). Complexity: The Emerging Science and the Edge of Order and Chaos. London: Simon and Schuster. Wolf, A. (1986). Quantifying chaos with Lyapunov exponents. In A. V. Holden (Ed.), Chaos (pp. 273-290). Princeton: Princeton University Press. Wolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. A. (1985). Determining Lyapunov exponents from a time series. Physica D, 16, 285-317. Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Wolfram Media. Yang, Y., & Yang, H. J. (2008). Complex network-based time series analysis. Physica A, 387(5-6), 1381-1386. Yule, G. U. (1921). On the time-correlation problem, with especial reference to the variate-difference correlation method. Journal of the Royal Statistical Society, 84(4), 497-537. Yule, G. U. (1927). On the method of investigating periodicities in disturbed series, with special reference to Wölfer’s sunspot numbers. Philosophical Transactions of the Royal Society of London, Series A, 226, 267-298. Zivot, E., & Andrews, D. W. K. (1992). Further Evidence on the Great Crash, the Oil-Price Shock and the Unit-Root Hypothesis. Journal of Business and Economic Statistics, 10(3), 251-270. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/65549 |