DIAF, Sami (2015): Multifractal Random Walk Models: Application to the Algerian Dinar exchange rates.
Preview |
PDF
MPRA_paper_67619.pdf Download (350kB) | Preview |
Abstract
This paper deals with a special class of multifractal models called the Multifractal Random Walk which has been widely used in finance because of its parsimonious framework, featuring many properties of financial data not considered in traditional linear models. Using the log-normal version, results confirm the Algerian Dinar is a multifractal process and has a rich wider variation spectrum versus the US Dollar than the Euro.
Item Type: | MPRA Paper |
---|---|
Original Title: | Multifractal Random Walk Models: Application to the Algerian Dinar exchange rates |
English Title: | Multifractal Random Walk Models: Application to the Algerian Dinar exchange rates |
Language: | English |
Keywords: | multifractal processes, stochastic volatility |
Subjects: | C - Mathematical and Quantitative Methods > C5 - Econometric Modeling F - International Economics > F3 - International Finance > F37 - International Finance Forecasting and Simulation: Models and Applications G - Financial Economics > G1 - General Financial Markets > G15 - International Financial Markets |
Item ID: | 67619 |
Depositing User: | Mr Sami Diaf |
Date Deposited: | 06 Nov 2015 15:25 |
Last Modified: | 28 Sep 2019 00:38 |
References: | C. Sattarhoff, Statistical Inference in Multifractal Random Walk Models for Financial Time Series, Volkswirtschaftliche Analysen, Peter Lang (2011). L. Calvet, A.Fisher, Forecasting multifractal volatility, Journal of Econometrics (2001), 105. L.Calvet, A.Fisher, Multifractal Volatility: Theory, Forecasting, and Pricing (Academic Press Advanced Finance, 2008). E.Bacry, J.F. Muzy, Multifractal stationary random measures and multifractal random walks with log-infinitely divisible scaling laws (2002), Physical review E66, 56121. E.Bacry, A.Kozhemyak, J.F. Muzy, Log-normal continuous cascades : aggregation properties and estimation. Application to financial time-series. Quantitative Finance 01/2012. E.Bacry, L.Duvernet, J.F. Muzy, Asymétrie des rendements et volatilité multifractale (2013) http://labex-mme-dii.u-cergy.fr/wp-content/uploads/2012/12/seminaire1_duvernet1.pdf E.Bacry, The mrw package, simulation/estimation of the log-normal multifractal random walks. http://www.cmap.polytechnique.fr/~bacry/LastWave/download_doc.html L.Duvernet, Parametric estimation of the log-normal Multifractal Random Walk process, http://www.cmapx.polytechnique.fr/~duvernet/mrwstat.pdf S.Diaf, R. Toumache, Multifractal Analysis of the Algerian Dinar - US Dollar exchange rate (2013), http://mpra.ub.uni-muenchen.de/50763/1/MPRA_paper_50763.pdf V.Vargas, Présentation du modèle MRW et des faits stylisés empiriques, (2010). http://www.math.ens.fr/~vargas/Coursmasef/Cour1.pdf T.Lux, The multifractal model of asset returns: its estimation via GMM and its use for volatility forecasting, Economics Working Papers, Christian-Albrechts Univesität Kiel (2003) http://d-nb.info/97067970x/34 T.Lux, M.Segnon, Multifractal models in finance: their origin, properties, and applications, Kiel Institute of the World Economy (2013). https://www.ifw-members.ifw-kiel.de/publications/multifractal-models-in-finance-their-origin-propterties-and-applications/KWP_1860.pdf A.Kutergyn, V.Filiminov, On the modeling of financial time series, Financial econometrics and empirical market microstructure, Springer (2015). D.Sornette, Critical phenomena in natural sciences. Chaos, fractals and selforganization and disorder: concepts and tools. Springer (2006). |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/67619 |