Bachoc, Francois and Leeb, Hannes and Pötscher, Benedikt M. (2014): Valid confidence intervals for post-model-selection predictors.
Preview |
PDF
MPRA_paper_69352.pdf Download (474kB) | Preview |
Abstract
We consider inference post-model-selection in linear regression. In this setting, Berk et al.(2013a) recently introduced a class of confidence sets, the so-called PoSI intervals, that cover a certain non-standard quantity of interest with a user-specified minimal coverage probability, irrespective of the model selection procedure that is being used. In this paper, we generalize the PoSI intervals to post-model-selection predictors.
Item Type: | MPRA Paper |
---|---|
Original Title: | Valid confidence intervals for post-model-selection predictors |
Language: | English |
Keywords: | Inference post-model-selection, confidence intervals, optimal post-model-selection predictors, non-standard targets, linear regression |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection |
Item ID: | 69352 |
Depositing User: | Benedikt Poetscher |
Date Deposited: | 10 Feb 2016 17:27 |
Last Modified: | 26 Sep 2019 21:52 |
References: | Andrews, D. W. K. and Guggenberger, P. (2009). Hybrid and size-corrected subsampling methods. Econometrica, 77 721-762. Belloni, A., Chernozhukov, V. and Hansen, C. (2011). Inference for high-dimensional sparse econometric models. Advances in Economics and Econometrics. 10th World Congress of the Econometric Society, Volume III, 245-295. Belloni, A., Chernozhukov, V. and Hansen, C. (2014). Inference on treatment effects after selection among high-dimensional controls. Rev. Econom. Stud., 81 608-650. Berk, R., Brown, L., Buja, A., Zhang, K. and Zhao, L. (2013a). Valid post-selection inference. Ann. Statist., 41 802-837. Berk, R., Brown, L., Buja, A., Zhang, K. and Zhao, L. (2013b). Valid post-selection inference. Unpublished version, URL http://www-stat.wharton.upenn.edu/~lzhao/ papers/MyPublication/24PoSI-submit.pdf. Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression. Ann. Statist., 32 407-499. Ewald, K. (2012). On the influence of model selection on confidence regions for marginal associations in the linear model. Master's thesis, University of Vienna. Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc., 96 1348-1360. Fithian, W., Sun, D. and Taylor, J. (2015). Optimal inference after model selection. Preprint. Greenshtein, E. and Ritov, Y. (2004). Persistence in high-dimensional linear predictor selection and the virtue of overparametrization. Bernoulli, 10 971-988. Kabaila, P. and Leeb, H. (2006). On the large-sample minimal coverage probability of confidence intervals after model selection. J. Amer. Statist. Assoc., 101 619-629. Lee, J. D., Sun, D. L., Sun, Y., and Taylor, J. E. (2015). Exact post-selection inference, with application to the lasso. To appear in Ann. Statist. Lee, J. D. and Taylor, J. (2014). Exact post model selection inference for marginal screening. ArXiv:1402.5596v2. Leeb, H. (2009). Conditional predictive inference post model selection. Ann. Statist., 37 2838-2876. Leeb, H. and Pötscher, B. M. (2005). Model selection and inference: Facts and Fiction. Econometric Theory, 21 21-59. Leeb, H. and Pötscher, B. M. (2006). Can one estimate the conditional distribution of post-model-selection estimators? Ann. Statist., 34 2554-2591. Leeb, H. and Pötscher, B. M. (2012). Testing in the presence of nuisance parameters: Some comments on tests post-model-selection and random critical values. Working paper. Leeb, H., Pötscher, B. M. and Ewald, K. (2015). On various confidence intervals post-model-selection. Statist. Sci., 30 216-227. Lockhart, R., Taylor, J., Tibshirani, R. J. and Tibshirani, R. (2014). A significance test for the LASSO. Ann. Statist., 42 413-468. Loftus, J. R. (2015). Selective inference after cross-validation. ArXiv:1511.08866. Loftus, J. R. and Taylor, J. (2015). Selective inference in regression models with groups of variables. ArXiv:1511.01478. Pötscher, B. M. (2009). Confidence sets based on sparse estimators are necessarily large. Sankhya, 71 1-18. Pötscher, B. M. and Schneider, U. (2010). Confidence sets based on penalized maximum likelihood estimators in Gaussian regression. Electron. J. Statist., 4 334-360. Rawlings, J. O., Pantula, S. G. and Dickey, D. A. (1998). Applied Regression Analysis: A Research Tool. 2nd ed. Springer Verlag, New York, NY. Scheffé, H. (1959). The Analysis of Variance. Wiley, New York. Schneider, U. (2015). Confidence sets based on thresholding estimators in high-dimensional Gaussian regression models. Econometric Reviews. Forthcoming. Tian, X. and Taylor, J. (2015). Asymptotics of selective inferene. Preprint. Tibshirani, R. J., Rinaldo, A., Tibshirani, R. and Wasserman, L. (2015). Uniform asymptotic inference and the bootstrap after model selection. Preprint. van de Geer, S., Bühlmann, P., Ritov, Y. and Dezeure, R. (2014). On asymptotically optimal confidence regions and tests for high-dimensional models. Ann. Statist., 42 1166- 1202. Wasserman, L. (2014). Discussion: "A significance test for the LASSO". Ann. Statist., 42 501-508. Wasserman, L. and Roeder, K. (2009). High-dimensional variable selection. Ann. Statist., 37 2178-2201. Zhang, C. (2010). Nearly unbiased variable selection under minimax concave penalty. Ann. Statist., 38 894-942. Zhang, C.-H. and Zhang, S. (2014). Confidence intervals for low dimensional parameters in high dimensional linear models. J. Roy. Statist. Soc. Ser. B, 76 217-242. Zhang, K. (2013). Rank-extreme association of gaussian vectors and low-rank detection. Working paper, available at http://arxiv.org/abs/1306.0623. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/69352 |
Available Versions of this Item
-
Valid confidence intervals for post-model-selection predictors. (deposited 16 Dec 2014 07:35)
- Valid confidence intervals for post-model-selection predictors. (deposited 10 Feb 2016 17:27) [Currently Displayed]