Halkos, George and Tsilika, Kyriaki (2016): Measures of correlation and computer algebra.
Preview |
PDF
MPRA_paper_70200.pdf Download (426kB) | Preview |
Abstract
Our contribution in this work is to set the directions for specialized econometric computations in a free computer algebra system, Xcas. We focus on the programming of a routine dedicated to correlation criteria for multiple regression models. We program several operations for detecting and evaluating collinearity by applying the diagnostic techniques of linear regression analysis. Xcas could constitute a supplemental tool in a collinear data study. Its use is proposed complementary to established econometric software or as substitute software.
Item Type: | MPRA Paper |
---|---|
Original Title: | Measures of correlation and computer algebra |
Language: | English |
Keywords: | Multicollinearity; correlation criteria; computational econometrics; CAS software. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C18 - Methodological Issues: General C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C63 - Computational Techniques ; Simulation Modeling C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs > C88 - Other Computer Software |
Item ID: | 70200 |
Depositing User: | G.E. Halkos |
Date Deposited: | 24 Mar 2016 05:28 |
Last Modified: | 29 Sep 2019 11:39 |
References: | Amman, H., Kendrick, D. & Rust, J., (1996). Handbook of Computational Economics. Elsevier North-Holland, Amsterdam, The Netherlands. Bautin, G. A., Kalyagin, V.A., Koldanov, A.P., Koldanov, P.A. & Pardalos, P.M. (2013). Simple measure of similarity for the market graph construction. Computational Management Science 10(2), 105-124. Bekker, P.A., Merckens, A., & Wansbeek, T.J. (1994). Identification, Equivalent Models, and Computer Algebra. San Diego, CA: Academic Press. (out of print) Belsley, D.A. (1991a). A guide to using the collinearity diagnostics. Computer Science in Economics and Management, 4, 33-50. Belsley, D.A. (1991b). Collinearity diagnostics: Collinearity and weak data in regression. New York: John Wiley & Sons. Belsley, D.A., Kuh, E. & Welsch, R.H. (1980). Regression diagnostics: Identifying influential data and sources of collinearity. New York: John Wiley & Sons. Belsley, D.A. (1999). Mathematica as an Environment for Doing Economics and Econometrics. Computational Economics, 14(1), 69-87. Bjerkoholt, O. & Dupont-Kieffer, A. (Eds), (2009). Problems and Methods of Econometrics. The Poincare Lectures of Ragnar Frisch, 1993. Routledge, London, New York. Bollen, K.A. & Bauldry, S. (2010). Model identification and computer algebra. Sociological Methods and Research, 39(2), 127-156. Brown, M.T. & Wicker R.T. (2000). Discriminant analysis, In: Tinsley H.E.A. and Brown S.D. (Eds), Handbook of Applied Multivariate Statistics and Mathematical Modeling, 209-235, Elsevier. Callaghan, K. & Chen, J. (2008). Revisiting the Collinear Data Problem: An Assessment of Estimator ‘Ill-Conditioning’ in Linear Regression, Practical Assessment, Research & Evaluation, 13(5). Field, A. (2009). Discovering Statistics using SPSS for Windows, Third edition. Sage publications, Los Angeles, London, New Delhi, Singapore, Washington D.C. Frawley, W.J. (1985). Computer Generation of Symbolic Generalized Inverses and Applications to Physics and Data Analysis. In: R. Pavelle (Ed.) Applications of Computer Algebra. Kluwer Academic Publishers, Boston/Dordrecht/Lancaster. Friendly, M. & Kwan, E. (2009). Where's Waldo? Visualizing Collinearity Diagnostics, The American Statistician, 63(1), 56-65. Fox, J. (1984). Linear Statistical Models and Related Methods. John Wiley and Sons, New York. Gujarati, D.N. (2003). Basic Econometrics, 4th ed. Boston: McGraw Hill. Halkos, G.E. (2006). Econometrics: Theory and Practice. Giourdas Publications, Athens. Halkos, G.E. (2011). Econometrics: Theory and Practice: Instructions in using Eviews, Minitab, SPSS and Excel. Gutenberg: Athens. Halkos, G.E. & Tsilika, K.D. (2015). Programming Identification Criteria in Simultaneous Equation Models. Computational Economics 46(1), 157-170. DOI: 10.1007/s10614-014-9444-9. Hendrickx, J. (2010). perturb: Tools for evaluating collinearity. R package version 2.04. URL http://CRAN.R-project.org/package=perturb Hutton, J. & Hutton, J. (1995). The Maple computer algebra system: A review. Journal of Applied Econometrics, 10(3), 329–337. doi: 10.1002/jae.3950100308 Kendrick, D.A. & Amman, H.M. (1999). Programming languages in economics. Computational Economics, 14, 151-181. Li, J. & Racine, J.S. (2008). Maxima: An open source computer algebra system. Journal of Applied Econometrics, 23(4), 515–523. doi: 10.1002/jae.1007 Merckens, A. &Bekker, P.A. (1993). Identification of simultaneous equation models with measurement error: a computerized evaluation. Statistica Neerlandica, 47(4), 233–244. Merckens, A. (1991). Computer algebra applications in econometrics. Doctoral Thesis, 164 p. University of Groningen. Pindyck, R.S. & Rubinfeld, D.L. (1998). Econometric Models and Economic Forecasts. 4th Edn., McGrawHill, Boston. Schipp, B. & Krämer, W. (Eds) (2009). Statistical Inference, Econometric Analysis and Matrix Algebra: Festschrift in Honor of Götz Trenkler, Springer, Heidelberg. Sheppard, K. (2014). Introduction to Python for Econometrics, Statistics and Data Analysis. University of Oxford. Tuesday 5th August, 2014. Available at: https://www.kevinsheppard.com/images/0/09/Python_introduction.pdf Shirokikh, O., Pastukhov, G., Boginski, V. & Butenko, S. (2013). Computational study of the US stock market evolution: a rank correlation-based network model. Computational Management Science 10(2), 81-103. Stroeker, R.J. & Kaashoek, J.F. (1999). Discovering Mathematics with Maple: An interactive exploration for mathematicians, engineers and econometricians. Springer Basel AG. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/70200 |