Aldanondo, Ana M. and Casasnovas, Valero L. and Almansa, M. Carmen (2016): Cost-constrained measures of environmental efficiency: a material balance approach.
Preview |
PDF
MPRA_paper_72490.pdf Download (423kB) | Preview |
Abstract
Joint cost-environmental efficiency analysis based on the material balance principle (MBP) has an important short-coming, in that the measures of allocative efficiency it produces do not fully integrate environmental and economic outcomes. Their limitation lies in their failure to take into account some decision-making units (DMU) use a combination of inputs that is more environmentally-harmful than that of the least-cost unit, or, more rarely, more costly than that of the least-polluting unit. Input substitution can therefore bring both environmental and economic benefits. This paper develops a method for differentiating between environmental allocative efficiency gains that involve an economic trade-off and those that do not. Drawing insight from the literature on multi-criteria analysis, we extend the MBP approach to new measures of cost-constrained environmental efficiency using data envelopment analysis (DEA). The proposed approach is illustrated by an application geared to assessing the efficiency of a sample of greenhouse horticultural production units in Almeria, Spain. The results for this case show that it is possible to increase environmental allocative efficiency by up to 34 % on average without incurring additional costs.
Item Type: | MPRA Paper |
---|---|
Original Title: | Cost-constrained measures of environmental efficiency: a material balance approach |
Language: | English |
Keywords: | Cross constrained cost-environmental efficiency, material balance condition, nitrogen pollution, green house horticulture |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C61 - Optimization Techniques ; Programming Models ; Dynamic Analysis D - Microeconomics > D2 - Production and Organizations > D24 - Production ; Cost ; Capital ; Capital, Total Factor, and Multifactor Productivity ; Capacity Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q12 - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q50 - General |
Item ID: | 72490 |
Depositing User: | Valero L. Casasnovas |
Date Deposited: | 12 Jul 2016 18:56 |
Last Modified: | 07 Oct 2019 17:31 |
References: | Aldanondo, A.M, Casasnovas, V.L., 2014. Input aggregation bias in technical efficiency with multiple criteria analysis. Appl. Econ. Lett. 22, 430–435. doi:10.1080/13504851.2014.948666 Aldanondo, A.M, Casasnovas, V.L., 2015. More is better than one: the impact of different numbers of input aggregators in technical efficiency estimation. MPRA Paper No.64120. https://mpra.ub.uni-muenchen.de/64120/1/MPRA_paper_64120.pdf (accessed 11.07.16). Ayres, R.U., Kneese, A.V., 1969. Production, consumption and externalities. Am. Econ. Rev. 59, 282–297. Ayres, R.U., 1995. Thermodynamics and process analysis for future economic scenarios. Environ. Resour. Econ. 6, 207-230. doi:10.1007/BF00705980 Banker, R.D., Charnes, R.F., Cooper, W.W., 1984. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 30, 1078–1092. http://dx.doi.org/10.1287/mnsc.30.9.1078 Chankong, V., Haimes, Y.Y., 1983. Multiobjective Decision Making: Theory and Methodology. North-Holland, Amsterdam. Charnes, A., Cooper, W.W., Rhodes, E., 1978. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2, 429–444. doi:10.1016/0377-2217(78)90138-8 Chen, W-C., Johnson, A.L., 2010. A unified model for detecting efficient and inefficient outliers in data envelopment analysis. Comput. Oper. Res. 37, 417–425. doi:10.1016/j.cor.2009.06.010 Coelli, T., Lauwers, L., Van Huylenbroeck, G., 2007. Environmental efficiency measurement and the materials balance condition. J. Prod. Anal. 28, 3–12. doi:10.1007/s11123-007-0052-8 Färe, R., Grosskopf, S., Lovell, C.A.K., 1994. Production frontiers. Cambridge University Press, Cambridge. 22 Färe, R., Grosskopf, S., Zelenyuk, V., 2004. Aggregation bias and its bounds in measuring technical efficiency. Appl. Econ. Lett. 11, 657–60. doi:10.1080/1350485042000207243 Färe, R., Grosskopf, S., Pasurka, C., 2013. Joint production of good and bad outputs with a network application, in: Shogren, J. (Ed.), Encyclopedia of Energy, Natural Resources and Environmental Economics. Elsevier, Amsterdam, pp. 109–118. Farrell, M. J., 1957. The measurement of productive efficiency, J. R. Stat. Soc. Ser. A-G. 120, 253–90. Haimes, Y.Y.; Lasdon, L.S.; Wismer, D.A., 1971. On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. 1, 296–297. doi:10.1109/TSMC.1971.4308298 Hampf, B., 2014. Separating environmental efficiency into production and abatement efficiency: a nonparametric model with application to US power plants. J. Prod. Anal. 41, 457–73. doi:10.1007/s11123-013-0357-8 Hoang, V.N., 2014. Analysis of resource efficiency: a production frontier approach. J. Environ. Manage. 137, 128–136. doi:10.1016/j.jenvman.2014.01.046 Hoang, V.N., Coelli, T., 2011. Measurement of agricultural total factor productivity growth incorporating environmental factors: a nutrients balance approach. J. Environ. Econ. Manag. 62, 462–474. doi:10.1016/j.jeem.2011.05.009 Hoang, V.N., Nguyen, T., 2013. Analysis of environmental efficiency variations: a nutrient balance approach. Ecol. Econ. 86, pp. 37–46. doi:10.1016/j.ecolecon.2012.10.014 Hoang, V.N., Prasada Rao, D.S., 2010. Measuring and decomposing sustainable efficiency in agricultural production: a cumulative exergy balance approach. Ecol. Econ. 69, 1765–1776. doi:10.1016/j.ecolecon.2010.04.014 Jahanshahloo, G.R., Hosseinzadeh, F., Shoja, N., Tohidi, G., Razavyan, S., 2004. A method for detecting influential observation in radial DEA models. Appl. Math. Comput. 147, 415–421. doi:10.1016/S0096-3003(02)00735-X Kuosmanen, T., Kortelainen, M., 2005. Measuring eco-efficiency of production with data envelopment analysis, J. Ind. Ecol. 9, 59–72. doi:10.1162/108819805775247846 Lauwers, L.H., 2009. Justifying the incorporation of the materials balance principle into frontier-based eco-efficiency models. Ecol. Econ. 68, 1605–1614. doi:10.1016/j.ecolecon.2008.08.022 Lauwers, L.H., Van Huylenbroeck, G., 2003. Materials balance based modelling of environmental efficiency. Contributed paper selected for presentation at the 25th 23International Conference of Agricultural Economists, Durban, South Africa, August 16th-22th. http://www2.vlaanderen.be/landbouw/downloads/cle/pap8.pdf (accessed 11.07.16). Lauwers, L.H., Van Huylenbroeck, G., Rogiers, G., 1999. Technical, economic and environmental efficiency analysis of pig fattening farms. Poster presentation at the 9th European Congress of Agricultural Economists, Warsaw, Poland, August 24th-28th. Lozano, S., 2015. Technical and environmental efficiency of a two-stage production and abatement system. Ann. Oper. Res. In press, advance online publication: 15 July 2015. doi:10.1007/s10479-015-1933-2 Marler, R.T., Arora, J.S., 2004. Survey of multi-objective optimization methods for engineering. Struct. Multidisc. Optim. 26, 369–395. doi:10.1007/s00158-003-0368-6 Mavrotas, G., 2009. Effective implementation of the e-constraint method in multi-objective mathematical programming problems. Appl. Math. Comput. 213, 455–465. doi:10.1016/j.amc.2009.03.037 Messac, A., Ismail-Yahaya, A., Mattson, C.A., 2003. The normalized normal constraint method for generating the Pareto frontier. Struct. Multidisc. Optim. 25, 86–98. doi:10.1007/s00158-002-0276-1 Murty, S., Russell, R.R., Levkoff, S.B., 2012. On modelling pollution-generating technologies. J. Environ. Econ. Manag. 64, 117–135. doi:10.1016/j.jeem.2012.02.005 Nguyen, T.T., Hoang, V.N., Seo, B., 2012. Cost and environmental efficiency of rice farms in South. Korea. Agr. Econ. 43, 369–378. doi:10.1111/j.1574-0862.2012.00589.x OECD, 2001. OECD national soil surface nitrogen balances. Explanatory notes. OECD General Secretariat, Paris. http://www.oecd.org/tad/sustainable-agriculture/1916652.pdf (accessed 11.07.16). Pastor, J.T, Ruiz, J.L., Sirvent, I., 1999. A statistical test for detecting influential observations in DEA. Eur. J. Oper. Res. 115, 542–554. doi:10.1016/S0377-2217(98)00153-2 Pastor, J.T, Ruiz, J.L., Sirvent, I., 2002. A statistical test for nested radial DEA models. Oper. Res. 50, 728–735. doi:10.1287/opre.50.4.728.2866 Pethig, R., 2006. Non-linear production, abatement, pollution and materials balance reconsidered. J. Environ. Econ. Manag. 51, 185–204. doi:10.1016/j.jeem.2005.01.006 Primont, D., 1993. Efficiency measures and input aggregation, in: Diewert, W. E., Spremann, K., Stehling, F. (Eds.), Mathematical Modelling in Economics. Essays in Honor of Wolfgang Eichhorn. Springer, Berlin, pp. 288–294. 24 Reinhard, S., Knox Lovell, C.A., Thijssen, G.J., 2000. Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA. Eur. J. Oper. Res. 121, 287–303. doi:10.1016/S0377-2217(99)00218-0 Shephard, R.W., 1970. Theory of Cost and Production Functions. Princenton University Press, Princenton. Simar, L., 2003. Detecting outliers in frontier models: a simple approach. J. Prod. Anal. 20, 391–424. doi:10.1023/A:1027308001925 Simar, L., Wilson, P.W., 2001. Testing restrictions in nonparametric efficiency models. Commun. Stat-Simul. C. 30, 159–184. doi:10.1081/SAC-100001865 Simar, L., Wilson P.W., 2008. Statistical inference in nonparametric frontier models: recent developments and perspectives, in: Fried, H., Lovell, C.A.K., Schmidt, S.S. (Eds.), The Measurement of Productive Efficiency, 2nd edn. Oxford University Press, Oxford, pp.421–521. Simar, L., Wilson, P.W., 2015. Statistical approaches for nonparametric frontier models: a guided tour. Int. Stat. Rev. 83, 77–110. doi:10.1111/insr.12056 Torrellas, M., Antón, A., López, J.C, Baeza, E.J., Pérez- Parra, J., Muñoz, P., 2012. LCA of a tomato crop in a multi-tunnel greenhouse in Almeria. Int. J. Life. Cycle Assess. 17, 863–875. doi:10.1007/s11367-012-0409-8 Van Meensel, J., Lauwers, L., Van Huylenbroeck, G., 2010a. Communicative diagnosis of cost-saving options for reducing nitrogen emission from pig finishing. J. Environ. Manage. 91, 2370–2377. doi:10.1016/j.jenvman.2010.06.026 Van Meensel, J., Lauwers, L., Van Huylenbroeck, G., Van Passel, S., 2010b. Comparing frontier methods for economic–environmental trade-off analysis. Eur. J. Oper. Res. 207, 1027–1040. doi:10.1016/j.ejor.2010.05.026 Welch, E., Barnum, D., 2009. Joint environmental and cost efficiency analysis of electricity generation. Ecol. Econ. 68, 2336–2343. doi:10.1016/j.ecolecon.2009.03.004 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/72490 |