Akamatsu, Takashi and Fujishima, Shota and Takayama, Yuki (2016): Discrete-Space Agglomeration Model with Social Interactions: Multiplicity, Stability, and Continuous Limit of Equilibria.
Preview |
PDF
MPRA_paper_74713.pdf Download (764kB) | Preview |
Abstract
This study examines the properties of equilibrium, including the stability, of discrete-space agglomeration models with social interactions. The findings reveal that while the corresponding continuous-space model has a unique equilibrium, the equilibrium in discrete space can be non-unique for any finite degree of discretization by characterizing the discrete-space model as a potential game. Furthermore, it indicates that despite the above result, any sequence of discrete-space models' equilibria converges to the continuous-space model's unique equilibrium as the discretization of space is refined.
Item Type: | MPRA Paper |
---|---|
Original Title: | Discrete-Space Agglomeration Model with Social Interactions: Multiplicity, Stability, and Continuous Limit of Equilibria |
Language: | English |
Keywords: | Social interaction; Agglomeration; Discrete space; Potential game; Stability; Evolutionary game theory |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C62 - Existence and Stability Conditions of Equilibrium C - Mathematical and Quantitative Methods > C7 - Game Theory and Bargaining Theory > C72 - Noncooperative Games C - Mathematical and Quantitative Methods > C7 - Game Theory and Bargaining Theory > C73 - Stochastic and Dynamic Games ; Evolutionary Games ; Repeated Games D - Microeconomics > D6 - Welfare Economics > D62 - Externalities R - Urban, Rural, Regional, Real Estate, and Transportation Economics > R1 - General Regional Economics > R12 - Size and Spatial Distributions of Regional Economic Activity |
Item ID: | 74713 |
Depositing User: | Yuki Takayama |
Date Deposited: | 23 Oct 2016 09:28 |
Last Modified: | 27 Sep 2019 17:02 |
References: | Akamatsu, T., Fujishima, S., Takayama, Y., 2014. On stable equilibria in discrete-space social interaction models. MPRA Paper, University Library of Munich, Germany, 55938. Allen, T., Arkolakis, C., 2014. Trade and the topography of the spatial economy. The Quarterly Journal of Economics 129 (3), 1085--1140. Anas, A., Xu, R., 1999. Congestion, land use, and job dispersion: A general equilibrium model. Journal of Urban Economics 45 (3), 451--473. Bapat, R. B., Raghavan, T. E. S., 1997. Nonnegative Matrices and Applications. Cambridge University Press. Beckmann, M. J., 1976. Spatial equilibrium in the dispersed city. In: Papageorgiou, G. J. (Ed.), Mathematical Land Use Theory. Lexington Books, pp. 117--125. Blanchet, A., Mossay, P., Santambrogio, F., 2016. Existence and uniqueness of equilibrium for a spatial model of social interactions. International Economic Review 57 (1), 31--60. Borukhov, E., Hochman, O., 1977. Optimum and market equilibrium in a model of a city without a predetemined center. Environment and Planning A 9 (8), 849--856. Braid, R. M., 1988. Heterogeneous preferences and non-central agglomeration of firms. Regional Science and Urban Economics 18 (1), 57--68. Brown, G. W., von Neumann, J., 1950. Solutions of games by differential equations. In: Kuhn, H. W., Tucker, A. W. (Eds.), Contributions to the Theory of Games I. Princeton University Press. Caruso, G., Peeters, D., Cavailh\`es, J., Rounsevell, M., 2007. Spatial configurations in a periurban city. A cellular automata-based microeconomic model. Regional Science and Urban Economics 37 (5), 542--567. Caruso, G., Peeters, D., Cavailh\`es, J., Rounsevell, M., 2009. Space-time patterns of urban sprawl, a 1D cellular automata and microeconomic approach. Environment and Planning B 36 (6), 968--988. Dupuis, P., Nagurney, A., 1993. Dynamical systems and variational inequalities. Annals of Operations Research 44 (1), 9--42. Fujishima, S., 2013. Evolutionary implementation of optimal city size distributions. Regional Science and Urban Economics 43 (2), 404--410. Fujita, M., Krugman, P. R., Mori, T., 1999. On the evolution of hierarchical urban systems. European Economic Review 43 (2), 209--251. Fujita, M., Thisse, J.-F., 2013. Economics of Agglomeration: Cities, Industrial Location, and Globalization, 2nd Edition. Cambridge University Press. Gilboa, I., Matsui, A., 1991. Social stability and equilibrium. Econometrica 59 (3), 859--867. Griva, I., Nash, S. G., Sofer, A., 2009. Linear and Nonlinear Optimization. Society for Industrial and Applied Mathematics. Hofbauer, J., Oechssler, J., Riedel, F., 2009. Brown-von Neumann-Nash dynamics: the continuous strategy case. Games and Economic Behavior 65 (2), 329--373. Hofbauer, J., Sigmund, K., 1988. The Theory of Evolution and Dynamical Systems. Cambridge University Press. Horn, R. A., Johnson, C. R., 2013. Matrix Analysis, 2nd Edition. Cambridge University Press. LeVeque, R. J., 2007. Finite Difference Methods for Ordinary and Partial Differential Equations. Society for Industrial and Applied Mathematics. Monderer, D., Shapley, L. S., 1996. Potential games. Games and Economic Behavior 14 (1), 124--143. Mossay, P., Picard, P. M., 2011. On spatial equilibria in a social interaction model. Journal of Economic Theory 146 (6), 2455--2477. O'Hara, D. J., 1977. Location of firms within a square central business district. The Journal of Political Economy 85 (6), 1189--1207. Oyama, D., 2009a. Agglomeration under forward-looking expectations: Potentials and global stability. Regional Science and Urban Economics 39 (6), 696--713. Oyama, D., 2009b. History versus expectations in economic geography reconsidered. Journal of Economic Dynamics and Control 33 (2), 394--408. Sandholm, W. H., 2001. Potential games with continuous player sets. Journal of Economic Theory 97 (1), 81--108. Sandholm, W. H., 2005. Negative externalities and evolutionary implementation. The Review of Economic Studies 72 (3), 885--915. Sandholm, W. H., 2007. Pigouvian pricing and stochastic evolutionary implementation. Journal of Economic Theory 132 (1), 367--382. Sandholm, W. H., 2010. Population Games and Evolutionary Dynamics. MIT Press. Simsek, A., Ozdaglar, A., Acemoglu, D., 2007. Generalized Poincare-Hopf theorem for compact nonsmooth regions. Mathematics of Operations Research 32 (1), 193--214. Swinkels, J. M., 1993. Adjustment dynamics and rational play in games. Games and Economic Behavior 5 (3), 455--484. Tabuchi, T., 1986. Urban agglomeration economies in a linear city. Regional Science and Urban Economics 16 (3), 421--436. Takayama, Y., Akamatsu, T., 2010. Non-uniqueness and stability of equilibrium urban configuration for Beckmann's spatial interaction model. Journal of Japan Society of Civil Engineers, Series D 66 (2), 232--245. Taylor, P. D., Jonker, L. B., 1978. Evolutionary stable strategies and game dynamics. Mathematical Biosciences 40 (1-2), 145--156. Turner, M. A., 2005. Landscape preferences and patterns of residential development. Journal of Urban Economics 57 (1), 19--54. Yueh, W.-C., Cheng, S. S., 2008. Explicit eigenvalues and inverses of tridiagonal Toeplitz matrices with four perturbed corners. The ANZIAM Journal 49 (03), 361. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/74713 |