CHIKHI, Mohamed (2017): Chocs exogènes et non linéarités dans les séries boursières: Application à la modélisation non paramétrique du cours de l'action Orange.
This is the latest version of this item.
PDF
MPRA_paper_76691.pdf Download (1MB) |
|
Preview |
PDF
MPRA_paper_76815.pdf Download (1MB) | Preview |
Abstract
This paper aims to analyze the cyclical behavior of stock exchange Orange prices from 01/03/2000 to 02/02/2017 by the research of nonlinearities through a class of heteroscedastic non parametric models. The identification of non parametric models requires the selection of the Markov coefficients and the choice of bandwidth, which determines the degree of estimator’s smoothing.
Item Type: | MPRA Paper |
---|---|
Original Title: | Chocs exogènes et non linéarités dans les séries boursières: Application à la modélisation non paramétrique du cours de l'action Orange |
English Title: | Exogenous Shocks and nonlinearity in the stock exchange series: Application to the nonparametric modelling of Orange stock exchange prices |
Language: | French |
Keywords: | Erreur de prédiction finale, noyau, fenêtre, processus autorégressif fonctionnel hétéroscédastique, action Orange. Final Prediction Error, kernel, bandwidth, heteroscedastic functional autoregressive process, stock exchange Orange. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics G - Financial Economics > G1 - General Financial Markets > G17 - Financial Forecasting and Simulation |
Item ID: | 76815 |
Depositing User: | Mohamed CHIKHI |
Date Deposited: | 14 Feb 2017 01:39 |
Last Modified: | 04 Sep 2024 15:10 |
References: | Auestad, B. and Tjostheim, D. (1990), Identification of nonlinear time series: first order characterization and order determination, Biometrika, 77, 4, 669-687. (1990) Bosq, D et Lecoutre, J.P., Analyse et prévision des séries chronologiques, Masson, Paris. (1992) Bosq, D., Sur la prédiction non paramétrique de variables aléatoires et mesures aléatoires, Pub. Interne, UER de Mathématiques, Lilles. (1979) Bosq, D., Nonparametric statistics for stochastic processes, Lecture Notes in statistics, 110, Springer-verlag. (1996) Box, G and Pierce, D., Distribution of residual autocorrelation in autoregressive integrated moving average time series models, J, Ann., Statist., 6, 461-464. (1970) Brockmann, M., Locally adaptive bandwidth choice for kernel regression estimators, J. Amer. Statist. Assoc., 88, 1302-1309. (1993) Cheng, B. and Tong, H., On consistent nonparametric order determination and chaos, Journal of The Royal Statistical Society, Series B, 54, 427-449. (1992) Chikhi, M and Diebolt, C., Nonparametric Analysis of Financial Time Series by the Kernel Methodology, in: Quality & Quantity. International Journal of Methodology (Springer), 44, pp. 865-880. (2010) Chikhi, M and Diebolt, C., The Reichsbank : A Nonparametric Modelling of Historical Time Series, in: Applied Economics Letters (Routledge), 16(14), pp. 1409-1414. (2009) Chiu, S.T., Bandwidth selection for kernel estimates with correlated noise, Statist. Probab. Lett., 8, 347-354. (1989) Collomb, G., Estimation non paramétrique de probabilités conditionnelles, C.R. Acad. sci. Paris Sér I Math., 291, 427-430. (1980) Doukhan, P., Mixing: Properties and examples, New York; Springer-Verlag. (1994) Elliott, G., Rothenberg, T. J., & Stock, J. H., Efficient Tests for an Autoregressive Unit Root. Econometrica, 64, 4, 813–836. (1996) Engle, R.F., Autoregressive Conditional Heteroscedasticity with Esti¬mates of the Variance of United Kingdom Inflation, Econometrica, 50(4) 987-1007. (1982) Gannoun, A., Prédiction non paramétrique : médianogramme et méthode du noyau en estimation de la médiane conditionnelle, Statistique et Analyse des données, 16(23), 23-42. (1991) Gouriéroux, C., Modèles ARCH et applications financières, Economica, Paris. (1992) Härdle, W and Chen, R., Nonparametric Time Series Analysis, a selective review with examples, Proceedings of the 50th session of the ISI, Peking. (1996) Härdle, W and Yang, L., Nonparametric autoregression with Multiplicative Volatility and additive Mean, Discussion paper 96-62, SFB 373, Humboldt Universität zu Berlin. (1996) Härdle, W, Lütkepohl, H and Chen, R., A review of Nonparametric Time Series Analysis, Discussion Paper 96-48, SFB 373, Humboldt Universität zu Berlin. (1996) Härdle, W, Tsybakov, A. B and Yang, L., Nonparametric vector autoregression, Journal of Statistical Planning and Inference 68, 221-245. (1998) Härdle, W., Applied nonparametric regression, Cambridge university press, Cambridge. (1990) Lütkepohl, H. and Krätzig, M., Applied Time Series Econometrics. (2003) Masry, E and Tjostheim, D., Nonparametric estimation and identification of non-linear ARCH time series: strong convergence and asymptotic normality, Matzner-Lober, E., Prévision non paramétrique des processus stochastiques, Thèse de doctorat de l’université de Montpellier II. (1997) Nadaraya, E.A., On estimating regression, Theory probability and their applications, 9, 134-137. (1964) Ng, S and Perron, P., Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power, Econometrica, 69(6), 1519-1554. (2001) Phillips, P.C.B., & Perron, P., Testing for Unit Roots in Time Series Regression, Biometrika, 75, 335-346. (1988) Robinson, P.M., Nonparametric estimators for time series, Journal of Time Series Analysis, 4, 185-207. (1983) Rosa, M. A. C., Prévision robuste sous une hypothèse ergodique, Thèse de Doctorat de l’université de Toulouse I. (1993) Schwarz, G., Estimating the dimension of a Model, Annals of Statistics, 6,461-464. (1978) Silverman, B.W., Density estimation for Statistics and data analysis, Chapman & Hall. (1986) Stute, W., On almost sure convergence of conditional empirical distribution function, Ann. of Prob. , 14, 891-901. (1986) Tjostheim, D. and Auestad, B., Nonparametric identification of nonlinear time series: selecting significant lags, Journal of American Statistical Association, 89, 1410-1419. (1994b) Tschernig, R and Yang, L., Nonparametric Lag Selection for Time Series, Journal of Time Series Analysis, forthcoming. (1998) Tschernig, R., Nonlinearities in German Unemployment Rates: A Nonparametric Analysis, SFB 373 discussion paper 45. (1996) Ullah, A., Nonparametric estimation and hypothesis testing in econometric models, Empec, 13, 223-249. (1988) Vieu, P., order choice in nonlinear autoregressive models, statistics, OPA , 26, 307-328. (1995) Watson, G.S., Smooth regression analysis, Sankhyä, A26, 359-372. (1964) Yang, L and Tschernig, R., Multivariate bandwidth selection for local linear regression, Journal of the Royal Statistical Society, Series B, 61, 793-815. (1999) Yang, L and Tschernig, R., Non- and semiparametric identification of seasonal nonlinear autoregression models, Econometric Theory 18: 1408-1448. (2002) |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/76815 |
Available Versions of this Item
-
Chocs exogènes et non linéarités dans les séries boursières: Application à la modélisation non paramétrique du cours de l'action Orange. (deposited 09 Feb 2017 00:37)
- Chocs exogènes et non linéarités dans les séries boursières: Application à la modélisation non paramétrique du cours de l'action Orange. (deposited 14 Feb 2017 01:39) [Currently Displayed]