Logo
Munich Personal RePEc Archive

Granger causality in dynamic binary short panel data models

Bartolucci, Francesco and Pigini, Claudia (2017): Granger causality in dynamic binary short panel data models.

[thumbnail of MPRA_paper_77486.pdf]
Preview
PDF
MPRA_paper_77486.pdf

Download (392kB) | Preview

Abstract

Strict exogeneity of covariates other than the lagged dependent variable, and conditional on unobserved heterogeneity, is often required for consistent estimation of binary panel data models. This assumption is likely to be violated in practice because of feedback effects from the past of the outcome variable on the present value of covariates and no general solution is yet available. In this paper, we provide the conditions for a logit model formulation that takes into account feedback effects without specifying a joint parametric model for the outcome and predetermined explanatory variables. Our formulation is based on the equivalence between Granger's definition of noncausality and a modification of the Sims' strict exogeneity assumption for nonlinear panel data models, introduced by Chamberlain1982 and for which we provide a more general theorem. We further propose estimating the model parameters with a recent fixed-effects approach based on pseudo conditional inference, adapted to the present case, thereby taking care of the correlation between individual permanent unobserved heterogeneity and the model's covariates as well. Our results hold for short panels with a large number of cross-section units, a case of great interest in microeconomic applications.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.