Leung, Yee and Fischer, Manfred M. and Wu, Wei-Zhi and Mi, Ju-Sheng (2008): A rough set approach for the discovery of classification rules in interval-valued information systems. Published in: International Journal of Approximate Reasoning , Vol. 47, No. 2 (2008): pp. 233-246.
Preview |
PDF
MPRA_paper_77767.pdf Download (302kB) | Preview |
Abstract
A novel rough set approach is proposed in this paper to discover classification rules through a process of knowledge induction which selects optimal decision rules with a minimal set of features necessary and sufficient for classification of real-valued data. A rough set knowledge discovery framework is formulated for the analysis of interval-valued information systems converted from real-valued raw decision tables. The optimal feature selection method for information systems with interval-valued features obtains all classification rules hidden in a system through a knowledge induction process. Numerical examples are employed to substantiate the conceptual arguments.
Item Type: | MPRA Paper |
---|---|
Original Title: | A rough set approach for the discovery of classification rules in interval-valued information systems |
Language: | English |
Keywords: | Classification; Interval-valued information systems; Knowledge discovery; Knowledge reduction; Rough sets |
Subjects: | C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C38 - Classification Methods ; Cluster Analysis ; Principal Components ; Factor Models |
Item ID: | 77767 |
Depositing User: | Dr. Manfred M. Fischer |
Date Deposited: | 03 Apr 2017 10:09 |
Last Modified: | 27 Sep 2019 02:20 |
References: | M.J. Beynon (2004), Stability of continuous value discretisation: an application within rough set theory, International Journal of Approximate Reasoning 35 (1) 29-53. S. Bodjanova (1997), Approximation of fuzzy concepts in decision making, Fuzzy Sets and Systems 85 (1997) 23-29. C.C. Chan, J.W. Grzymala-Busse (1994), On the two local inductive algorithms: PRISM and LEM2, Foundations of Computing and Decision Sciences 19 185-204. M.R. Chmielewski, J.W. Grzymala-Busse (1996), Global discretization of continuous attributes as preprocessing for machine learning, International Journal of Approximate Reasoning 15 (4) 319-331. K. Dembczynski, S. Greco, R. Slowinski (2002), Methodology of rough-set-based classification and sorting with hierarchical structure of attributes and criteria, Control and Cybernetics 31 (4) 891-920. D. Dubois, H. Prade (1990), Rough fuzzy sets and fuzzy rough sets, International Journal of General Systems 17 191-208. I. Duntsch, G. Gediga (1998), Uncertainty measures of rough set prediction, Artificial Intelligence 106 109-137. S. Greco, B. Matarazzo, R. Slowinski (1999), Handling missing values in rough set analysis of multi-attribute and multi-criteria decision problems, in: N. Zhong, A. Skowron, S. Ohsuda (eds.), New Directions in Rough Sets, Data Mining, and Granular-Soft Computing, LNAI 1711, Springer-Verlag, Berlin, pp.146-157. S. Greco, M. Inuiguchi, R. Slowinski (2006), Fuzzy rough sets and multiple-premise gradual decision rules, International Journal of Approximate Reasoning 41 (2) 179-211. S. Greco, B. Matarazzo, R. Slowinski (2001), Rough sets theory for multicriteria decision analysis, European Journal of Operational Research 129 1-47. J.W. Grzymala-Busse (1991), On the unknown attribute values in learning from examples, in: Z.W. Ras, M. Zemankova (eds.), Proceedings of the ISMIS-91, 6th International Symposium on Methodologies for Intelligent Systems, LNAI 542, Springer-Verlag, New York, pp. 368-377. J.W. Grzymala-Busse, J. Stefanowski (2001), Three discretization methods for rule induction, International Journal of Intelligent Systems 16 (1) 29-38. J.W. Grzymala-Busse (1992), LERS--a system for learning from examples based on rough sets, in: R. Slowinski (ed), Intelligent Decision Support--Handbook of Applications and Advances of the Rough Sets Theory, Dordrecht: Kluwer Academic Publishers, pp. 3-18. J. Han, Y. Cai, N. Cercone (1993), Data-driven discovery of quantitative rules in relational databases, IEEE Transactions on Knowledge and Data Engineering 5 (1) 29-40. T.P. Hong, T.T. Wang, S.L. Wang (2000), Knowledge acquisition from quantitative data using the rough-set theory, Intelligent Data Analysis 4 289-304. D. Kim (2001), Data classification based on tolerant rough set, Pattern Recognition 34 1613-1624. A. de Korvin, C. McKeegan, R. Kleyle (1998), Knowledge acquisition using rough sets when membership values are fuzzy sets, Journal of Intelligent and Fuzzy Systems 6 237-244. M. Kryszkiewicz (1998), Rough set approach to incomplete information systems, Information Sciences 112 39-49. M. Kryszkiewicz (1999), Rules in incomplete information systems, Information Sciences 113 271-292. M. Kryszkiewicz (2001), Comparative study of alternative types of knowledge reduction in inconsistent systems, International Journal of Intelligent Systems 16 105-120. Y. Leung, D. Li (2003), Maximal consistent block technique for rule acquisition in incomplete information systems, Information Sciences 153 85-106. Y. Leung, W.Z. Wu, W.X. Zhang (2006), Knowledge acquisition in incomplete information systems: A rough set approach, European Journal of Operational Research 168 (1) 164-180. P.J. Lingras, Y.Y. Yao (1998), Data mining using extensions of the rough set model., Journal of the American Society for Information Science 49 415-422. J.S. Mi, Y. Leung, W.Z. Wu (2005), An uncertainty measure in partition-based fuzzy rough sets, International Journal of General Systems 34 77-90. J.S. Mi, W.Z. Wu, W.X. Zhang (2004), Approaches to knowledge reductions based on variable precision rough sets model, Information Sciences 159 255-272. J.S. Mi, W.X. Zhang (2004), An axiomatic characterization of a fuzzy generalization of rough sets, Information Sciences 160 (1-4) 235-249. A. Mrozek (1989), Rough sets and dependency analysis among attributes in computer implementations of expert’s inference models, International Journal of Man-Machine Studies 30 (4)457-473. Z. Pawlak (1982), Rough sets, International Journal of Information and Computer Sciences 11 341-356. Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Boston. Z. Pawlak (1991), Rough classification, International Journal of Human-Computer Studies 51 (1999) 369-383. L. Polkowski (1998), A. Skowron, Rough Sets in Knowledge Discovery 1: Methodology and Applications, 2: Applications, Physica-Verlag, Heidelberg. L. Polkowski, S. Tsumoto, T.Y. Lin (2000), Rough Set Methods and Applications, Physica-Verlag, Heidelberg. G. Shafer (1976), A Mathematical Theory of Evidence, Princeton University Press, New York. A. Skowron (1993), Boolean reasoning for decision rules generation, in: J. Komorowski, Z. Ras (eds), Methodologies for Intelligent Systems, LNAI 689, Springer-Verlag, Berlin, pp.295-305. A. Skowron, C. Rauszer (1992), The discernibility matrices and functions in information systems, in: R. Slowinski (ed), Intelligent Decision Support-Handbook of Applications and Advances of the Rough Sets Theory, Kluwer Academic Publishers, London, pp. 331-362. D. Slezak, W. Ziarko (2005), The investigation of the Bayesian rough set model, International Journal of Approximate Reasoning 40 (1-2) 81-91. R. Slowinski, D. Vanderpooten (1997), Similarity relation as a basis for rough approximations, in: P.P. Wang (ed), Advances in Machine Intelligence and Soft-Computing vol.6, Duke University Press, Durham, pp 17-33. R. Slowinski, D. Vanderpooten (2000), A generalized definition of rough approximations based on similarity, IEEE Transactions on Knowledge and Data Engineering 12 331-336. J. Stefanowski (1998), On rough set based approaches to induction of decision rules, in: L. Polkowski, A. Skowron (eds), Rough Sets in Knowledge Discovery 1, Physica-Verlag, Heidelberg, pp. 500-529. J. Stefanowski, D. Vanderpooten (1994), A general two stage approach to rule induction for examples, in: W. Ziarko (ed), Rough Sets, Fuzzy Sets and Knowledge Discovery, Springer-Verlag, Berlin, pp. 317-325. W.Z. Wu, Y. Leung, W.X. Zhang (2002), Connections between rough set theory and Dempster-Shafer theory of evidence, International Journal of General Systems 31 (4) 405-430. W.Z. Wu, J.S. Mi, W.X. Zhang (2003), Generalized fuzzy rough sets, Information Sciences 151 263-282. W.Z. Wu, W.X. Zhang (2002), Neighborhood operator systems and approximations, Information Sciences 144 201-217. W.Z. Wu, W.X. Zhang (2004), Constructive and axiomatic approaches of fuzzy approximation operators, Information Sciences 159 (3-4) 233-254. W.Z. Wu, W.X. Zhang (2003), H.Z. Li, Knowledge acquisition in incomplete fuzzy information systems via rough set approach, Expert Systems 20 (5) 280-286. R. Yasdi (1996), Combining rough sets learning and neural learning: method to deal with uncertain and imprecise information, Neuralcomputing 7 (1) 61-84. Y.Y. Yao (1998), Generalized rough set model, in: L. Polkowski, A. Skowron (eds.), Rough Sets in Knowledge Discovery 1, Physica-Verlag, Heidelberg, pp.286-318. Y.Y. Yao (1996), Two views of the theory of rough sets in finite universes, International Journal of Approximate Reasoning 15 (4) 291-317. Y.Y. Yao (2001), Information granulation and rough set approximation, International Journal of Intelligent Systems 16 (1) 87-104. W.X. Zhang, J.S. Mi, W.Z. Wu (2003), Approaches to knowledge reductions in inconsistent systems, International Journal of Intelligent Systems 18 989-1000. W. Ziarko (1993), Variable precision rough set model. Journal of Computer and System Sciences 46 39-59. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/77767 |