Andreas, Eder and Bernhard, Mahlberg and Bernhard, Stürmer (2017): Measuring and explaining productivity growth of renewable energy producers: An empirical study of Austrian biogas plants.
Preview |
PDF
MPRA_paper_79826.pdf Download (824kB) | Preview |
Abstract
This study explores productivity growth for a group of 65 Austrian biogas plants from 2006 to 2014 using Data Envelopment Analysis. The sample covers about 25 % of the installed electric capacity of Austrian biogas plants. Productivity growth is measured by calculating the Malmquist productivity index, and the contributions of technical change, efficiency change and scale change to productivity growth are isolated. Average annual productivity growth between 2006 and 2014 is 1.1 %. The decomposition of the Malmquist index shows that the annual scale change, technical change, and efficiency change for the average plant is 0.6 %, 0.3 % and 0.3 %, respectively. Those results indicate that the exploitation of returns to scale is a major driver of productivity growth in the Austrian biogas sector. However, there is a large variation in productivity growth across biogas plants. A second-stage regression analysis identifies important determinants of productivity growth. The results show that i) the exploitation of returns to scale as well as changes in ii) output diversification iii) capital intensity, iv) capacity utilization and v) feedstock prices are positively associated with productivity growth.
Item Type: | MPRA Paper |
---|---|
Original Title: | Measuring and explaining productivity growth of renewable energy producers: An empirical study of Austrian biogas plants. |
Language: | English |
Keywords: | Data Envelopment Analysis, Malmquist Productivity Index, Renewable Energy Sources, Biogas Energy, Cogeneration |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C61 - Optimization Techniques ; Programming Models ; Dynamic Analysis D - Microeconomics > D2 - Production and Organizations > D24 - Production ; Cost ; Capital ; Capital, Total Factor, and Multifactor Productivity ; Capacity Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q16 - R&D ; Agricultural Technology ; Biofuels ; Agricultural Extension Services Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q4 - Energy > Q42 - Alternative Energy Sources |
Item ID: | 79826 |
Depositing User: | Mag. Andreas Eder |
Date Deposited: | 28 Jun 2017 05:02 |
Last Modified: | 27 Sep 2019 11:30 |
References: | Allen K. DEA in the ecological context: an overview. In: Westermann G (Ed.), Data Envelopment Analysis in the Service Sector. Gabler, Wiesbaden 1999, 203–235. Balk BM. Scale efficiency and productivity change. Journal of Productivity Analysis 2001; 15(3):159-183. Banker RD, Charnes A, Cooper WW. Some models for estimating technical and scale efficiencies in data envelopment analysis. Management Science 1984; 30(9):1078–1092. Barros, CP. Efficiency analysis of hydroelectric generating plants: a case study for Portugal. Energy Economics 2008; 30(1):59-75. Barros CP, Antunes OS. Performance assessment of Portuguese wind farms: Ownership and managerial efficiency. Energy Policy 2011; 39(6):3055-3063. Basu S. Pro-cyclical Productivity: Increasing Returns or Cyclical Utilization? Quarterly Journal of Economic 1996; 111(3):719-751. Bogetoft P, Otto L. Benchmarking with DEA, SFA, and R. New York: Springer Science+Business Media; 2011. Borger B, Kerstens K. The Malmquist Productivity Index and Plant Capacity Utilization. Scandinavian Journal of Economics 2000; 102(2):303-310. Braun, R., Laaber, M., Madlener, R., Brachtl, E., Kirchmayr, R. (2007). Aufbau eines Bewertungssystems für Biogasanlagen – „Gütesiegel Biogas“ Endbericht. Tulln, Austria: Projekt Nr. 804472 im Auftrag des BM IT Forschungsprogramm „Energiesysteme der Zukunft“ . Available from: https://www.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaaahdapo [accessed 24 March 2016]. Briec W, Peypoch N, Ratsimbanierana H. Productivity growth and biased technological change in hydroelectric dams. Energy Economics 2011; 33(5):853-858. Charnes A, Cooper WW, Rhodes E. Measuring efficiency of decision making units. European Journal of Operational Research 1978; 2(6):429–444. Cook, WD, K. Tone, J. Zhu. Data envelopment analysis: Prior to choosing a model, Omega 2014; 44:1–4. Ðatkov Đ, Effenberger M. Data envelopment analysis for assessing the efficiency of biogas plants: capabilities and limitations. Journal of Processing and Energy in Agriculture 2010; 14(3-4):49-53. Diewert EW, Fox KJ. Decomposing productivity indexes into explanatory factors. European Journal of Operational Research 2017; 256(1):275-291. Dyckhoff H, Allen K. Measuring ecological efficiency with data envelopment analysis (DEA). European Journal of Operational Research 2001; 132(2):312-325. E-Control. Energie-Control Austria für die Regulierung der Elektrizitäts- und Erdgaswirtschaft; Available from: http://www.e-control.at/statistik [accessed 3 May 2017]. Eder A, Mahlberg B. Size, Subsidies and Technical Efficiency in Renewable Energy Production: The Case of Austrian Biogas Plants. The Energy Journal 2018; (in print). Ederer N. Evaluating capital and operating cost efficiency of offshore wind farms: A DEA approach. Renewable and Sustainable Energy Reviews 2015; 42:1034-1046. Farrell MJ. The measurement of productive efficiency. Journal of the Royal Statistical Society: Series A 1957; 120:253–281. Färe R, Grosskopf S, Lovell CAK. The measurement of efficiency of production. Boston: Kluwer-Nijhoff Publishing; 1985. Färe R, Grosskopf S, Norris M, Zhang Z. Productivity growth, technical progress, and efficiency change in industrialized countries. American Economic Review 1994; 84(1):66–83. Filler G, Odening M, Seeger S, Hahn J. Zur Effizienz von Biogasanlagen. Berichte über Landwirtschaft 2007; 85(2):178-194. Fried H, Lovell CAK, Schmidt SS. The Measurement of Productive Efficiency and Productivity Growth. New York: Oxford University Press; 2008. Gharneh NS, Nabavieh A, Gholamiangonabadi D, Alimoradi M. Productivity change and its determinants: Application of the Malmquist index with bootstrapping in Iranian steam power plants. Utilities Policy 2014; 31:114-120. Giannangeli S, Gómez-Salvador R. Evolution and sources of manufacturing productivity growth. Evidence from a panel of European countries. ECB Working Paper Series 2008; No. 914.26. Heshmati A, Rashidghalam M. Labour Productivity in Kenyan Manufacturing and Service Industries. IZA Discussion Paper 2016; No. 9923. Hicks JR. The theory of wages. New York: St. Martins; 1932. Iglesias G, Castellanos P, Seijas A. Measurement of productive efficiency with frontier methods: A case study for wind farms. Energy Economics 2010; 32(5):1199-1208. Jaraite J, Di Maria C. Efficiency, productivity and environmental policy: A case study of power generation in the EU. Energy Economics 2012; 34(5):1557-1568. Lijo L, Lorenzo-Toja Y, Gonzalez-Garcia S, Bacenetti J, Negri M, Moreira MT. Eco-efficiency assessment of farm-scaled biogas plants. Bioresource Technology 2017; dx.doi.org/10.1016/j.biortech.2017.01.055. Kitzing L, Mitchell C, Morthorst PE. Renewable energy policies in Europe: Converging or diverging? Energy Policy 2012; 51:192-201. Klessmann C, Held A, Rathmann M, Ragwitz M. Status and perspectives of renewable energy policy and deployment in the European Union–What is needed to reach the 2020 targets? Energy Policy 2011; 39(12):7637-7657. Kumar S, Managi S. Energy price-induced and exogenous technological change: Assessing the economic and environmental outcomes. Resource and Energy Economics 2009; 31(4):334-353. Kwon OS, Yun WC. Measuring economies of scope for cogeneration systems in Korea: a nonparametric approach. Energy Economics 2003; 25(4):331–338. Lovell CAK. The Decomposition of Malmquist Productivity Indexes. Journal of Productivity Analysis 2003; 20(3):437-458. Madlener R, Antunes C, Dias L. Assessing the performance of biogas plants with multi-criteria and data envelopment analysis. European Journal of Operational Research 2009; 14(3-4):49-53. Mcguckin RH, Streitwieser ML, Doms M. The Effect of Technology Use On Productivity Growth. Economics of Innovation and New Technology 1998; 7(1):1-26. Morrisson CJ. A Microeconomic Approach to the Measurement of Economic Performance. New York: Springer; 2012. OeMAG. Austrian settlement agency for green electricity: Einspeisemengen und Vergütungen. Available form: http://www.oem-ag.at/de/oekostromneu/einspeisemengen/ [accessed 27 March 2017] Ramos-Real FJ. Cost functions and the electric utility industry: a contribution to the debate on deregulation. Energy Policy 2005; 33(1):69-87. Ray S, Desli E. Productivity growth, technical progress and efficiency change in industrialized countries: comment. American Economic Review 1997; 87(5):1033–1039. Rácz VJ, Vestergaard N. Productivity and efficiency measurement of the Danish centralized biogas power sector. Renewable Energy 2016; 92:397-404 Sargent TC, Rodriguez ER. Labour or total factor productivity: do we need to choose? International productivity monitor 2000; 1:41-44. Shephard RW. Theory of Cost and Production Functions. Princeton: Princeton University Press; 1970. Simar L, Wilson PW. Nonparametric tests of returns to scale. European Journal of Operational Research 2002; 139(1):115–132. Simões P, Marques RC. On the economic performance of the waste sector. A literature review. Journal of Environmental Management 2012; 106:40–47. Skovsgaard L, Klinge Jacobsen H. Economies of scale in biogas production and the significance of flexible regulation. Energy Policy 2017; 101:77-89. Smith P. Model misspecification in Data Envelopment Analysis. Annals of Operations Research 1997; 73(0):233-252. Statistics Austria. Energy Balance 1970-2014; Available from: http://www.statistik.at/web_de/statistiken/energie_umwelt_innovation_mobilitaet/energie_und_umwelt/energie/energiebilanzen/index.html [accessed 7 December 2016]. Stürmer B. Feedstock change at biogas plants – Impact on production costs. Biomass and Bioenergy 2017; 98:228-235. Stürmer B, Schmid E, Eder MW. Impacts of biogas plant performance factors on total substrate costs. Biomass and Bioenergy 2011; 35:1552–1560. Vaz CB, Ferreira AP. Efficiency and Productivity Assessment of Wind Farms. In: Almeida JP, Oliveira JF, Pinto AA (Ed.), Operational Research IO 2013 – XVI Congress of APDIO, Braganca, Portugal, June 3-5, 2013. Springer International Publishing Switzerland, Cham 2015, 407-424. Walla C, Schneeberger W. The optimal size for biogas plants. Biomass and Bioenergy 2008; 32(6):551-557. Wirth S, Markard J, Truffer B, Rohracher H. Informal institutions matter: Professional culture and the development of biogas technology. Environmental Innovation and Societal Transitions 2013; 8:20-41. Zhu J. Data Envelopment Analysis: A Handbook of Models and Methods. New York: Springer Science+Business Media; 2015. Zhou P, Ang BW, Poh KL. A survey of data envelopment analysis in energy and environmental studies. European Journal of Operational Research 2008; 189(1):1-18. Zofío J. Malmquist Productivity Index Decompositions: a unifying framework. Applied Economics 2007; 39(18):2371 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/79826 |