Degiannakis, Stavros and Livada, Alexandra and Panas, Epaminondas (2008): Rolling-sampled parameters of ARCH and Levy-stable models. Published in: Applied Economics , Vol. 23, No. 40 (2008): pp. 3051-3067.
Preview |
PDF
MPRA_paper_80464.pdf Download (1MB) | Preview |
Abstract
In this paper an asymmetric autoregressive conditional heteroskedasticity (ARCH) model and a Levy-stable distribution are applied to some well-known financial indices (DAX30, FTSE20, FTSE100 and SP500), using a rolling sample of constant size, in order to investigate whether the values of the estimated parameters of the models change over time. Although, there are changes in the estimated parameters reflecting that structural properties and trading behaviour alter over time, the ARCH model adequately forecasts the one-day-ahead volatility. A simulation study is run to investigate whether the time variant attitude holds in the case of a generated ARCH data process revealing that even in that case the rolling-sampled parameters are time-varying.
Item Type: | MPRA Paper |
---|---|
Original Title: | Rolling-sampled parameters of ARCH and Levy-stable models |
Language: | English |
Keywords: | ARCH model, GED distribution, Leverage effect, Levy-stable distribution, Rolling sample, Spill over, Value at risk. |
Subjects: | C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C32 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods G - Financial Economics > G1 - General Financial Markets > G15 - International Financial Markets |
Item ID: | 80464 |
Depositing User: | Dr. Stavros Degiannakis |
Date Deposited: | 30 Jul 2017 12:42 |
Last Modified: | 03 Oct 2019 04:48 |
References: | Andersen, T. and Bollerslev, T. (1998). ARCH and GARCH Models, Encyclopedia of Statistical Sciences Vol.II, (eds.) Samuel Kotz, Campbell B. Read and David L. Banks, New York, John Wiley and Sons Inc. Angelidis, T., Benos, A. and Degiannakis, S. (2004). The Use of GARCH Models in VaR Estimation. Statistical Methodology, 1(2), 105-128. Balaban, E. and Bayar, A. (2005). Stock returns and volatility: empirical evidence from fourteen countries. Applied Economics Letters, 12, 603-611. Barndorff-Nielsen, O.E., Nicolato, E. and Shephard, N. (2002). Some Recent Developments in Stochastic Volatility Modelling. Quantitative Finance, 2, 11-23. Bera, A.K. and Higgins, M.L. (1993). ARCH Models: Properties, Estimation and Testing. Journal of Economic Surveys, 7, 305-366. Berndt, E., Hall, B., Hall, R. and Hausman, J. (1974). Estimation and Inference in Nonlinear Structural Models. Annals of Economic and Social Measurement, 3, 653-665. Black, F. (1976). Studies of Stock Market Volatility Changes. Proceedings of the American Statistical Association, Business and Economic Statistics Section, 177-181. Blattberg, R.C. and Gonedes, N.J. (1974). A comparison of the stable and student distributions as statistical models for stock prices. Journal of Business, 47, 244-80. Blair, B.J., Poon, S.-H. and Taylor, S.J. (2001). Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high frequency index returns. Journal of Econometrics, 105, 5-26. Bollerslev, T., Chou, R. and Kroner, K.F. (1992). ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence. Journal of Econometrics, 52, 5-59. Bollerslev, T., Engle, R.F. and Nelson, D. (1994). ARCH Models. In: R.F. Engle and D. McFadden (Eds.), Handbook of Econometrics, Volume 4, Elsevier Science, Amsterdam, 2959-3038. Bradley, B. and Taqqu, M. (2002). Financial Risk and Heavy Tails. In: S. Rachev (Ed.), Heavy-tailed distributions in Finance, North-Holland. Brooks, C. and Persand, G. (2003). The Effect of Asymmetries on Stock Index Return Value-at-Risk Estimates. Journal of Risk Finance, 4(2), 29-42. Campbell, J., Lo, A. and MacKinlay, A.C. (1997). The Econometrics of Financial Markets. New Jersey. Princeton University Press. Chib, S., Kim, S. and Shephard, N. (1998). Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models. Review of Economic Studies, 65, 361-393. Christoffersen, P. (1998). Evaluating interval forecasts. International Economic Review, 39, 841-62. Clark, P.K. (1973). A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices. Econometrica, 41, 135-156. Degiannakis, S. (2004). Volatility Forecasting: Evidence from a Fractional Integrated Asymmetric Power ARCH Skewed-t Model. Applied Financial Economics, 14, 1333-1342. Degiannakis, S. and Xekalaki, E. (2001). Using a Prediction Error Criterion for Model Selection in Forecasting Option Prices. Athens University of Economics and Business, Department of Statistics, Technical Report, 131. Available online at: http://stat-athens.aueb.gr/~exek/papers/Xekalaki-TechnRep131(2001a)ft.pdf. Degiannakis, S. and Xekalaki, E. (2004). Autoregressive Conditional Heteroscedasticity Models: A Review. Quality Technology and Quantitative Management, 1(2), 271-324. Degiannakis, S. and Xekalaki, E. (2006). Assessing the Performance of a Prediction Error Criterion Model Selection Algorithm in the Context of ARCH Models, Applied Financial Economics, forthcoming. De Vries, C.G. (1991). On the Relation Between GARCH and Stable Processes. Journal of Econometrics, 48, 313-324. Diebold, F.X. (2003). The ET Interview: Professor Robert F. Engle. Econometric Theory, 19, 1159-1193. Ding, Z., Granger, C.W.J. and Engle, R.F. (1993). A Long Memory Property of Stock Market Returns and a New Model. Journal of Empirical Finance, 1, 83-106. Engle, R.F., Lilien, D.M. and Robins, R.P. (1987). Estimating Time Varying Risk Premia in the Term Structure: The ARCH-M Model. Econometrica, 55, 391–407. Engle, R.F., Ito, T. and Lin, W.L. (1990). Meteor Showers or Heat Waves? Heteroskedastic Intra-Daily Volatility in the Foreign Exchange Market. Econometrica, 58, 525-542. Engle, R.F., Hong, C., Kane, A. and Noh, J. (1993). Arbitrage Valuation of Variance Forecasts with Simulated Options, Advances in Futures and Options Research, 6, 393-415. Engle, R.F., Kane, A. and Noh, J. (1997). Index-Option Pricing with Stochastic Volatility and the Value of Accurate Variance Forecasts. Review of Derivatives Research, 1, 120-144. Fama, E.F. (1965). The Behaviour of Stock Market Prices. Journal of Business, 38, 34-105. French, K.R. and Roll, R. (1986). Stock Return Variances: The Arrival of Information and the Reaction of Traders. Journal of Financial Economics, 17, 5-26. Frey, R. and Michaud, P. (1997). The Effect of GARCH-type Volatilities on Prices and Payoff-Distributions of Derivative Assets - a Simulation Study, ETH Zurich, Working Paper. Gallant, A.R., Hsieh, D.A. and Tauchen, G. (1991). On Fitting a Recalcitrant Series: The Pound/Dollar Exchange Rate 1974-83. In: W.A. Barnett, J. Powell, and G. Tauchen (Eds.), Nonparametric and Semiparametric Methods in Econometrics and Statistics, Cambridge University Press, Cambridge. Ghose, D. and Kroner, K.F. (1995). The relationship between GARCH and symmetric stable processes: Finding the source of fat tails in financial data. Journal of Empirical Finance, 2, 225–251. Groenendijk, P.A., Lucas, A. and de Vries, C.G. (1995). A note on the relationship between GARCH and symmetric stable processes. Journal of Empirical Finance, 2, 253–264. Ghysels, E., Harvey, A. and Renault, E. (1996). Stochastic Volatility. In: G.S. Maddala (Ed.), Handbook of Statistics, Vol. 14, Statistical Methods in Finance, 119-191, Amsterdam, North Holland. Giot, P. and Laurent, S. (2003). Value-at-Risk for Long and Short Trading Positions. Journal of Applied Econometrics, 18, 641-664. Heynen, R. and Kat, H. (1994). Volatility Prediction: A Comparison of the Stochastic Volatility, GARCH(1,1), and EGARCH(1,1) Models, Journal of Derivatives, Winter, 94, 50-65. Hol, E. and Koopman, S. (2000). Forecasting the Variability of Stock Index Returns with Stochastic Volatility Models and Implied Volatility, Tinbergen Institute, Discussion Paper No. 104, 4. Hoppe, R. (1998). VAR and the Unreal World, Risk, 11, 45-50. Jacquier, E., Polson, N. and Rossi, P. (1999). Stochastic Volatility: Univariate and Multivariate Extensions. CIRANO, Scientific Series, 99s, 26. Kanas, A. (1998). Volatility Spillovers Across Equity Markets: European Evidence. Applied Financial Economics, 8, 245-256. Kupiec, P.H. (1995). Techniques for verifying the accuracy of risk measurement models, Journal of Derivatives, 3, 73-84. Kon, S.J. (1984). Models of stock returns – A comparison. Journal of Business, 39, 147-165. Koutrouvelis, I.A. (1980). Regression-Type Estimation of the Parameter of Stable Laws. Journal of the American Statistical Association, 75, 918-928. Lamoureux, G.C. and Lastrapes, W.D. (1990). Heteroskedasticity in Stock Return Data: Volume Versus GARCH Effects. Journal of Finance, 45, 221-229. LeBaron, B. (1992). Some Relations Between Volatility and Serial Correlations in Stock Market Returns. Journal of Business, 65, 199-219. Liu, S.M. and Brorsen, B.W. (1995). Maximum likelihood estimation of a GARCH-stable model. Journal of Applied Econometrics, 10, 273–285. Mandelbrot, B. (1963). The Variation of Certain Speculative Prices, Journal of Business, 36, 299-319. Marquardt, D.W. (1963). An Algorithm for Least Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, 11, 431-441. McCulloch, J.H. (1986). Simple Consistent Estimates of Stable Distribution Parameters. Communications in Statistics: Simulation and Computation, 15, 1109-1136. McDonald, J.B. (1996). Probability Distributions for Financial Models. In: G.S. Maddala and C.R. Rao (Eds.), Statistical Methods in Finance, vol. 14, Handbook of Statistics, Elsevier, Amsterdam. Mittnik, S. and Rachev, S.T. (1993). Modelling Asset Returns with Alternative Stable Distributions, Economic Review, 12, 261-330. Mittnik, S., Rachev, S.T., Doganoglu, T. and Chenyao, D. (1999). Maximum Likelihood Estimation of Stable Paretian Models. Mathematical and Computer Modelling, 29, 275-293. Nelson, D. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, 59, 347-370. Noh, K., Engle, R.F. and Kane, A. (1994). Forecasting Volatility and Option Prices of the S&P 500 Index. Journal of Derivatives, 2, 17-30. Pagan, A. and Schwert, G. (1990). Alternative Models for Conditional Stock Volatility, Journal of Econometrics, 45, 267-290. Panas, E. (2001). Estimating Fractal Dimension Using Stable Distributions and Exploring Long Memory Through ARFIMA Models in Athens Stock Exchange. Applied Financial Economics, 11, 395-402. Panorska, A., Mittnik, S. and Rachev, S.T. (1995). Stable GARCH Models for Financial Time Series. Applied Mathematics Letters, 8, 33-37. Poon, S.H. and Granger, C.W.J. (2003). Forecasting Volatility in Financial Markets: A Review. Journal of Economic Literature, XLI, 478-539. Rachev, S. and Mittnik, S. (2000). Stable Paretian Models in Finance, John Wiley. Schwert, G.W. (1989). Why Does Stock Market Volatility Changes Over Time. Journal of Finance, 44, 1115-1153. Shephard, N. (2004). Stochastic Volatility: Selected Readings, Oxford University Press. Stock, J.H. (1988). Estimating Continuous Time Process Subject to Time Deformation. Journal of the American Statistical Association, 83, 77-85. Tauchen, G. and Pitts, M. (1983). The Price Variability-Volume Relationship on Speculative Markets. Econometrica, 51, 485-505. Taylor, S.J. (1994). Modelling Stochastic Volatility. Mathematical Finance, 4(2), 183-204. Tsionas, E.G. (2002). Likelihood-Based Comparison of Stable Paretian and Competing Models: Evidence from Daily Exchange Rates. Journal of Statistical Computation and Simulation, 72(4), 341-353. Wei, W. (2002). Forecasting stock market volatility with non-linear GARCH models: a case for China. Applied Economics Letters, 9, 163-166. Yu, J. (2002). Forecasting volatility in the New Zealand stock market. Applied Financial Economics, 12, 193-202. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/80464 |