Herrera Gómez, Marcos (2017): Fundamentos de Econometría Espacial Aplicada.
Preview |
PDF
MPRA_paper_80871.pdf Download (505kB) | Preview |
Abstract
The growing availability of Geo-referenced information needs particular econometric tools such as those developed by Spatial Econometrics. This econometric branch is dedicated to the analysis of heterogeneity and spatial dependence in regression models. In this paper, I review the most consolidated developments in the area related to the specification and interpretation of spatial dependence in cross-section and panel data. The work is completed with two classic empirical examples.
Item Type: | MPRA Paper |
---|---|
Original Title: | Fundamentos de Econometría Espacial Aplicada |
English Title: | Fundamentals of Applied Spatial Econometrics |
Language: | Spanish |
Keywords: | Modelos espacio-temporales; Dependencia espacial; Matriz espacial. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C12 - Hypothesis Testing: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C21 - Cross-Sectional Models ; Spatial Models ; Treatment Effect Models ; Quantile Regressions C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C23 - Panel Data Models ; Spatio-temporal Models |
Item ID: | 80871 |
Depositing User: | marcos herrera |
Date Deposited: | 19 Aug 2017 11:59 |
Last Modified: | 26 Sep 2019 08:21 |
References: | Anselin, L. (1988). Spatial econometrics: Methods and models, Volume 4. Kluwer Academic Publishers, Dordrecht. Anselin, L. (2005). Exploring spatial data with GeoDa: A workbook. Urbana-Champaign: Center for Spatially Integrated Social Science. Anselin, L. (2010). Thirty years of spatial econometrics. Papers in Regional Science, 89(1), 3-25. Anselin, L., A. Bera, R. Florax, y M. Yoon (1996). Simple diagnostic tests for spatial dependence. Regional Science and Urban Economics, 26(1), 77-104. Anselin, L., J. Le Gallo, y H. Jayet (2008). Spatial panel econometrics. En L. Matyas y P. Sevestre (Eds.), The econometrics of panel data: fundamentals and recent developments in theory and practice, vol. 46, 625-660. Springer. Arraiz, I., D. Drukker, H. Kelejian, e I. Prucha (2010). A spatial Cliff-Ord-type model with heteroskedastic innovations: Small and large sample results. Journal of Regional Science, 50(2), 592-614. Baltagi, B. y D. Li (2004). Prediction in the panel data model with spatial correlation. En L. Anselin, R. Florax, y S. Rey (Eds.), Advances in spatial econometrics, 283-295. Springer. Baltagi, B., S. Song, y W. Koh (2003). Testing panel data regression models with spatial error correlation. Journal of Econometrics, 117(1), 123-150. Bartels, C. y R. Ketellapper (1979). Exploratory and explanatory statistical analysis of spatial data. Martinus Nijho, Boston, MA. Bennett, R. (1979). Spatial time series. Pion, London. Bivand, R. (2010). Exploratory spatial data analysis. En M. Fischer y G (Eds.), Handbook of Applied Spatial Analisys, 219-254. Springer, Hieldelberg. Brock, W. y S. Durlauf (1995). Discrete choices with social interactions I: Theory. Santa Fe, Santa Fe Institute WP 95-10. Brueckner, J. (2003). Strategic interaction among governments: An overview of empirical studies. International Regional Science Review, 26(2), 175-188. Cheng, W. y L.-f. Lee (2017). Testing endogeneity of spatial and social networks. Regional Science and Urban Economics, 64, 81-97. Cliff, A. y J. Ord (1981). Spatial Processes: Models and Aplications. Pion: London. Cressie, N. (1993). Statistics for spatial data. New York, Wiley. Debarsy, N. y C. Ertur (2010). Testing for spatial autocorrelation in a fixed effects panel data model. Regional Science and Urban Economics, 40(6), 453-470. Debarsy, N., C. Ertur, y J. P. LeSage (2012). Interpreting dynamic space-time panel data models. Statistical Methodology, 9(1), 158-171. Drukker, D. , P. Egger, e I. Prucha (2013). On two-step estimation of a spatial autoregressive model with autoregressive disturbances and endogenous regressors. Econometric Reviews, 32(5-6), 686-733. Elhorst, J. (2010a). Dynamic panels with endogenous interaction effects when T is small. Regional Science and Urban Economics, 40(5), 272-282. Elhorst, J. (2010b). Spatial panel data models. En M. Fischer y A. Getis (Eds.), Handbook of Applied Spatial Analysis. Software Tools, Methods and Applications, 377-407. Springer-Verlag Berlin Heidelberg. Elhorst, J. (2014a). Matlab software for spatial panels. International Regional Science Review, 37(3), 389-405. Elhorst, J. (2014b). Spatial Econometrics. From Cross-sectional data to Spatial Panels. SpringerBriefs in Regional Science, Springer. Ertur, C. y W. Koch (2007). Growth, technological interdependence and spatial externalities: Theory and evidence. Journal of Applied Econometrics, 22(6), 1033-1062. Giacomini, R. y C. Granger (2004). Aggregation of space-time processes. Journal of Econometrics, 118(1), 7-26. Gibbons, S. y H. Overman (2012). Mostly pointless spatial econometrics?. Journal of Regional Science, 52(2), 172-191. Gotway, C. y L. Young (2002). Combining incompatible spatial data. Journal of the American Statistical Association, 97(458), 632-648. Graubard, B. y E. Korn (2002). Inference for superpopulation parameters using sample surveys. Statistical Science, 17(1), 73-96. Griffith, D. A. (1996). Some guidelines for specifying the geographic weights matrix contained in spatial statistical models. En S. Arlinghaus (Ed.), Practical Handbook of Spatial Statistics, p. 65-82. CRC Press Book: Boca Raton, FL. Halleck Vega, S. y J. Elhorst (2015). The SLX model. Journal of Regional Science, 55(3), 339-363. Hendry, D. (1979). Predictive failure and econometric modelling in macroeconomics: The transactions demand for money. En P. Ormerod (Ed.), Economic Modelling: Current Issues and Problems in Macroeconomic Mo- delling in the UK and the US, 217-242. Heinemann Education Books, London. Herrera, M. (2015). Econometría espacial usando Stata. Breve guía aplicada para datos de corte transversal. Documentos de Trabajo del IELDE (13). Herrera, M., J. Mur, y M. Ruiz (2016). Detecting causal relationships between spatial processes. Papers in Regional Science, 95(3), 577-594. Herrera, M., J. Mur, y M. Ruiz (2017). A comparison study on criteria to select the most adequate weighting matrix. XIth World Conference of the Spatial Econometrics Association, Singapure. Hordijk, L. (1979). Problems in estimating econometric relations in space. Papers in Regional Science, 42(1), 99-115. Kapoor, M., H. Kelejian, e I. Prucha (2007). Panel data models with spatially correlated error components. Journal of Econometrics, 140, 97-130. Kelejian, H. y D. Robinson (1995). Spatial correlation: a suggested alternative to the autoregressive model. En L. Anselin y R. Florax (Eds.), New directions in Spatial Econometrics, 75-95. Springer. Kelejian, H. y G. Piras (2014). Estimation of spatial models with endogenous weighting matrices, and an application to a demand model for cigarettes. Regional Science and Urban Economics, 46, 140-149. Kelejian, H. e I. Prucha (1998). A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. The Journal of Real Estate Finance and Economics, 17(1), 99-121. Kelejian, H. e I. Prucha (1999). A generalized moments estimator for the autoregressive parameter in a spatial model. International Economic Review, 40(2), 509-533. Kelejian, H. e I. Prucha (2010). Specication and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. Journal of Econometrics, 157(1), 53-67. Krugman, P. (1991). Increasing returns and Economic Geography. Journal of Political Economy, 99(3), 483-499. Lee, L.-f. (2003). Best spatial two-stage least squares estimators for a spatial autoregressive model with autoregressive disturbances. Econometric Reviews, 22(4), 307-335. Lee, L.-f. (2004). Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica, 72(6), 1899- 1925. Lee, L.-f. (2007). Identification and estimation of econometric models with group interactions, contextual factors and fixed effects. Journal of Econometrics, 140(2), 333-374. Lee, L.-f. y J. Yu (2010). Estimation of spatial autoregressive panel data models with fixed effects. Journal of Econometrics, 154(2), 165-185. Lee, L.-f. y J. Yu (2014). Spatial panel models. En B. Baltagi (Ed.), The Oxford Handbook of Panel Data, 363-401. Oxford University Press. LeSage, J. y R. Pace (2009). Introduction to spatial econometrics. Chapman and Hall/CRC press. Manski, C. (1993). Identication of endogenous social effects: The reflection problem. The Review of Economic Studies, 60(3), 531-542. Openshaw, S. (1984). The modifiable areal unit problem. Geo Books, Norwich. Printed by Headley Brothers Ltd. Kent. Openshaw, S. y P. Taylor (1979). A million or so correlation coecients: three experiments on the modifiable areal unit problem. En N. Wrigley y P. Taylor (Eds.), Statistical Methods in the Spatial Sciences, 127-144. Pion. Ord, J. (1981). Towards a theory of spatial statistics: a comment. Geographical Analysis, 13(1), 86-91. Ord, K. (1975). Estimation methods for models of spatial interaction. Journal of the American Statistical Association, 70(349), 120-126. Pace, R. y S. Zhu (2012). Separable spatial modeling of spillovers and disturbances. Journal of Geographical Systems, 14(1), 75-90. Paelinck, J. y L. Klaassen (1979). Spatial Econometrics. Saxon House, Farnborough. Pesaran, M. (2004). General diagnostic tests for cross section dependence in panels. Cambridge Working Papers in Economics No. 0435. University of Cambridge. Qu, X. y L.-F. Lee (2017). Estimation of an endogenous SAR model with spatial weights constructed by bilateral variables. XIth World Conference of the Spatial Econometrics Association, Singapure. Qu, X., L.-f. Lee, y J. Yu (2017). QML estimation of spatial dynamic panel data models with endogenous time varying spatial weights matrices. Journal of Econometrics, 197(2), 173-201. Smith, T. (2009). Estimation bias in spatial models with strongly connected weight matrices. Geographical Analysis, 41(3), 307-332. Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Economic geography, 46, 234-240. Waller, L. y C. Gotway (2004). Applied Spatial Statistics for Public Health Data, v. 368. John Wiley & Sons. Yu, J., R. de Jong, y L.-f. Lee (2008). Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large. Journal of Econometrics, 146 (1), 118-134. Yu, J., R. de Jong, y L.-f. Lee (2012). Estimation for spatial dynamic panel data with fixed effects: The case of spatial cointegration. Journal of Econometrics, 167(1), 16-37. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/80871 |