DOMBOU T., Dany R. (2017): How Borda voting rule can respect Arrow IIA and avoid Cloning manipulation. Published in: Journal of Economics Bibliography , Vol. 4, No. 3 (September 2017): pp. 234-243.
This is the latest version of this item.
Preview |
PDF
1383-4820-1-PB.pdf Download (733kB) | Preview |
Abstract
This paper proposes a new formulation of the Borda rule in order to deal with the problem of cloning manipulation. This new Borda voting specification will be named: Dynamic Borda Voting (DBV) and it satisfies Arrow's IIA condition. The calculations, propositions with proof and explanations are made to show the effectiveness of this method. From DBV, the paper presents a method to measure and quantify the magnitude of the shock due to change in irrelevant alternatives over a scale moving from 0 to 100.
Item Type: | MPRA Paper |
---|---|
Original Title: | How Borda voting rule can respect Arrow IIA and avoid Cloning manipulation |
English Title: | How Borda voting rule can respect Arrow IIA and avoid Cloning manipulation |
Language: | English |
Keywords: | Voting rules; Arrow IIA; Cloning manipulation; |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling D - Microeconomics > D7 - Analysis of Collective Decision-Making D - Microeconomics > D8 - Information, Knowledge, and Uncertainty |
Item ID: | 81980 |
Depositing User: | MsC Dany R. Dombou T. |
Date Deposited: | 17 Oct 2017 20:52 |
Last Modified: | 26 Sep 2019 16:23 |
References: | Arrow, K. J. (1963). Social Choice and Individual Values. 2nd ed. Wiley. Barbie, M., Puppe, C., & Tasnádi, A. (2006). Non-manipulable domains for the Borda count. Economic Theory, 27(2), 411–430. Béhue, V., Favardin, P., & Lepelley, D. (2009). La manipulation stratégique des règles de vote : une étude expérimentale. Recherches économiques de Louvain, 75(4), 503-516. doi:10.3917/rel.754.0503 Borda, J. C. (1781). Histoire de l'Académie Royale des Sciences. Mémoire sur les élections au scrutin. Condorcet, M. d. (1785). Éssai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. Imprimerie Royale. Dasgupta, P., & Maskin, E. (2003). On the robustness of majority rule. Mimeo. Diss, M., & Tlidi, A. (2016). Another Perspective on Borda's Paradox. GATE - Lyon Saint-Etienne WP 1632. Retrieved from https://ssrn.com/abstract=2875342 Gibbard, A. (1973). Manipulation of votings schemes : a general result. Econometrica(41), 587-601. Islam, J., Mohajan, H., & Moolio, P. (2012). Borda Voting is Non-manipulable but Cloning Manipulation is Possible. International Journal of Development Research and Quantitative Techniques, 2(1), 28–37. Lehtinen, A. (2007). The Borda rule is also intended for dishonest men. Public Choice(133), 73–90. doi:10.1007/s11127-007-9178-5 Lepelley, D., Moyouwou, I., & Smaoui, H. (2017). Monotonicity paradoxes in three-candidate elections using scoring elimination rules. Social Choice Welfare. doi:10.1007/s00355-017-1069-1 Maskin, E. (1995). Majority rule, social welfare functions, and game forms. (O. C. Press, Ed.) Choice, welfare and development. Saari, D., & McIntee, T. (2013). Connecting pairwise and positional election outcomes. Mathematical Social Sciences, 66, 140–151. Satterthwaite, M. A. (1975). Strategy-Proofness and Arrow’s Conditions. Journal of Economic Theory, 10, 198-217. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/81980 |
Available Versions of this Item
-
How Borda voting rule can respect Arrow IIA and avoid Cloning manipulation. (deposited 09 Aug 2017 23:47)
- How Borda voting rule can respect Arrow IIA and avoid Cloning manipulation. (deposited 17 Oct 2017 20:52) [Currently Displayed]