Aknouche, Abdelhakim and Bendjeddou, Sara and Touche, Nassim (2016): Negative binomial quasi-likelihood inference for general integer-valued time series models. Forthcoming in: Journal of Time Series Analysis
This is the latest version of this item.
Preview |
PDF
MPRA_paper_83082.pdf Download (451kB) | Preview |
Abstract
Two negative binomial quasi-maximum likelihood estimates (NB-QMLE's) for a general class of count time series models are proposed. The first one is the profile NB-QMLE calculated while arbitrarily fixing the dispersion parameter of the negative binomial likelihood. The second one, termed two-stage NB-QMLE, consists of four stages estimating both conditional mean and dispersion parameters. It is shown that the two estimates are consistent and asymptotically Gaussian under mild conditions. Moreover, the two-stage NB-QMLE enjoys a certain asymptotic efficiency property provided that a negative binomial link function relating the conditional mean and conditional variance is specified. The proposed NB-QMLE's are compared with the Poisson QMLE asymptotically and in finite samples for various well-known particular classes of count time series models such as the (Poisson and negative binomial) Integer GARCH model and the INAR(1) model. Applications to two real datasets are given.
Item Type: | MPRA Paper |
---|---|
Original Title: | Negative binomial quasi-likelihood inference for general integer-valued time series models |
English Title: | Negative binomial quasi-likelihood inference for general integer-valued time series models |
Language: | English |
Keywords: | Integer-valued time series models, Integer GARCH, Integer AR, Generalized Linear Models, Quasi-likelihood, Geometric QMLE, Negative Binomial QMLE, Poisson QMLE, consistency and asymptotic normality. |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General > C01 - Econometrics C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C18 - Methodological Issues: General C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C51 - Model Construction and Estimation |
Item ID: | 83082 |
Depositing User: | Prof. Abdelhakim Aknouche |
Date Deposited: | 04 Dec 2017 07:19 |
Last Modified: | 01 Oct 2019 18:54 |
References: | Ahmad A, Francq C. 2016. Poisson qmle of count time series models. Journal of Time Series Analysis 37: 291-314. Aknouche A, Bendjeddou S. 2017. Estimateur du quasi-maximum de vraisemblance géométrique d'une classe générale de modèles de séries chronologiques à valeurs entières. Comptes Rendus Mathematique 355: 99-104. Aknouche A, Bendjeddou S, Touche N. 2017. Negative binomial quasi-likelihood inference for general integer-valued time series models. Journal of Time Series Analysis, forthcoming, DOI: 10.1111/jtsa.12277. Al-Osh MA, Alzaid AA. 1987. First-order integer-valued autoregressive (INAR(1)) process. Journal of Time Series Analysis 8: 261-275. Benjamin MA, Rigby RA, Stasinopoulos DM. 2003. Generalized autoregressive moving average models. Journal of the American Statistical Association 98: 214-223. Billingsley P. 2008. Probability and measure (3rd edn). John Wiley. Bourguignon M. 2016. Poisson-geometric INAR(1) process for modeling count time series with overdispersion. Statistica Neerlandica 70: 176-192. Cameron AC, Trivedi PK. 1986. Econometric models based on count data: Comparisons and applications of some estimators and tests. Journal of Applied Econometrics 1: 29-53. Cameron C, Trivedi P. 2013. Regression analysis of count data (2nd edn). New York: Cambridge University Press. Chen CWS, So M, Li JC, Sriboonchitta S. 2016. Autoregressive conditional negative binomial model applied to over-dispersed time series of counts. Statistical Methodology 31: 73-90. Christou V, Fokianos K. 2014. Quasi-likelihood inference for negative binomial time series models. Journal of Time Series Analysis 35: 55-78. Christou V, Fokianos K. 2015. Estimation and testing linearity for non-linear mixed Poisson autoregressions. Electronic Journal of Statistics 9: 1357-1377. Davis RA, Liu H. 2016. Theory and inference for a class of observation-driven models with application to time series of counts. Statistica Sinica 26: 1673-1707. Davis R, Wu R. 2009. A negative binomial model for time series of counts. Biometrika 96: 735-749. Davis RA, Dunsmuir WTM, Wang Y. 1999. Modelling time series of count data. In Asymptotics, Nonparametrics and Time Series (edn, Subir Ghosh). New York: Taylor and Francis. Davis RA, Holan SH, Lund R, Ravishanker N. 2016. Handbook of discrete-valued time series. Chapman and Hall. Diop ML, Kengne W. 2017. Testing for parameter change in general integer-valued time series. Journal of Time Series Analysis 38: 880-894. Douc R, Doukhan P, Moulines E. 2013. Ergodicity of observation-driven time series models and consistency of the maximum likelihood estimator. Stochastic Processes and their Applications 123: 2620-2647. Doukhan P, Fokianos K, Tjøstheim D. 2012. On weak dependence conditions for Poisson autoregressions. Statistics and Probability Letters 82: 942-948. Doukhan P, Kengne W. 2015. Inference and testing for structural change in general Poisson autoregressive models. Electronic Journal of Statistics 9: 1267-1314. Doukhan P, Wintenberger O. 2008. Weakly dependent chains with infinite memory. Stochastic Processes and their Applications 118: 1997-2013. Efron B. 1986. Double exponential families and their use in generalized linear regression. Journal of the American Statistical Association 81: 709-721. Ferland R, Latour A, Oraichi D. 2006. Integer-valued GARCH process. Journal of Time Series Analysis 27: 923-942. Fokianos K. 2012. Count time series models. Handbook of Statistics. Time Series Analysis: Methods and Applications 30: 315-348. Fokianos K, Rahbek A, Tjøstheim D. 2009. Poisson autoregression. Journal of the American Statistical Association 140: 1430-1439. Fokianos K. Tjøstheim D. 2011. Log-linear Poisson autoregression. Journal of Multivariate Analysis 102: 563-578. Francq C, Zakoïan JM. 2010. GARCH models: Structure, statistical inference and financial applications. New York: Wiley. Franke J. 2010. Weak dependence of functional INGARCH processes. Technical report, University of Kaiserslautern. Heinen A. 2003. Modelling time series count data: an autoregressive conditional Poisson model. Available at SSRN 1117187. Gonçalves E, Mendes-Lopes N, Silva F. 2015. Infinitely divisible distributions in integer-valued GARCH models. Journal of Time Series Analysis 36: 503-527. Gourieroux C, Monfort A, Trognon A. 1984a. Pseudo maximum likelihood methods: Theory. Econometrica 52: 681-700. Gourieroux C, Monfort A, Trognon A. 1984b. Pseudo maximum likelihood methods: Applications to Poisson models. Econometrica 52: 701-720. Grunwald G, Hyndman R, Tedesco L, Tweedie R. 2000. Non-Gaussian conditional linear AR(1) models. Australian and New Zealand Journal of Statistics 42: 479-495. Hall P, Heyde CC. 1980. Martingale Limit Theory and its Applications. New York: Academic Press. Kedem B, Fokianos K. 2002. Regression models for time series analysis. New York: Wiley. Kengne W. 2015. Sequential change-point detection in Poisson autoregressive models. Journal de la Société Française de Statistique 156: 98-112. McCullagh P, Nelder JA. 1989. Generalized Linear Models (2nd edn). London: Chapman and Hall. McKenzie E. 1985. Some simple models for discrete variate time series. Water Resources Bulletin 21: 645-650. McKenzie E. 2003. Discrete variate time series, in Handbook of statistics. Amsterdam: Elsevier Science. Nelder JA, Wedderburn RW. 1972. Generalized Linear Models. Journal of the Royal Statistical Society, Series A 135: 370-384. Neumann MH. 2011. Absolute regularity and ergodicity of Poisson count processes. Bernoulli 17: 1268-1284. Rydberg TH, Shephard N. 2000. BIN models for trade-by-trade data. Modelling the number of trades in a fixed interval of time. In World Conference Econometric Society, 2000, Seattle. Contributed Paper 0740. Silva ME. 2015. Modelling time series of counts: an INAR approach. Textos de Matemática 47: 107-121. Steutel FW, Van Harn K. 1979. Discrete analogues of self-decomposability and stability. Annals of Probability 5: 893-899. Wedderburn RW. 1974. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61: 439-447. White H. 1982. Maximum likelihood of misspecified models. Econometrica 50: 1-25. Wooldridge JM. 1997. Quasi-likelihood methods for count data. In Handbook of Applied Econometrics. Oxford: Blackwell. Wooldridge JM. 2002. Econometric analysis of cross section and panel data. Cambridge, MA, MIT Press. Zeger SL. 1988. A regression model for time series of counts. Biometrika 75: 621-629. Zeger SL, Qaqish B. 1988. Markov regression models for time series: a quasi-likelihood approach. Biometrics 44: 1019-1031. Zhu F. 2011. A negative binomial integer-valued GARCH model. Journal of Time Series Analysis 32: 54-67. Zhu F. 2012a. Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued GARCH models. Journal of Mathematical Analysis and its Applications 389: 58-71. Zhu F. 2012b. Zero-inflated Poisson and negative binomial integer-valued GARCH models. Journal of Statistical Planning and Inference 142: 826-839. Zhu F. 2012c. Modeling time series of counts with COM-Poisson INGARCH models. Mathematical and Computer Modelling 56: 191-203. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/83082 |
Available Versions of this Item
-
Negative binomial quasi-likelihood inference for general integer-valued time series models. (deposited 04 Feb 2017 08:48)
- Negative binomial quasi-likelihood inference for general integer-valued time series models. (deposited 04 Dec 2017 07:19) [Currently Displayed]