Aknouche, Abdelhakim and Bendjeddou, Sara (2016): Negative binomial quasi-likelihood inference for general integer-valued time series models.
Preview |
PDF
MPRA_paper_76574.pdf Download (368kB) | Preview |
Abstract
Two negative binomial quasi-maximum likelihood estimates (NB-QMLE's) for a general class of count time series models are proposed. The first one is the profile NB-QMLE calculated while arbitrarily fixing the dispersion parameter of the negative binomial likelihood. The second one, termed two-stage NB-QMLE, consists of four stages estimating both conditional mean and dispersion parameters. It is shown that the two estimates are consistent and asymptotically Gaussian under mild conditions. Moreover, the two-stage NB-QMLE enjoys a certain asymptotic efficiency property provided that a negative binomial link function relating the conditional mean and conditional variance is specified. The proposed NB-QMLE's are compared with the Poisson QMLE asymptotically and in finite samples for various well-known particular classes of count time series models such as the (Poisson and negative binomial) Integer GARCH model and the INAR(1) model. Applications to two real datasets are given.
Item Type: | MPRA Paper |
---|---|
Original Title: | Negative binomial quasi-likelihood inference for general integer-valued time series models |
English Title: | Negative binomial quasi-likelihood inference for general integer-valued time series models |
Language: | English |
Keywords: | Integer-valued time series models, Integer GARCH, Integer AR, Generalized Linear Models, Quasi-likelihood, Geometric QMLE, Negative Binomial QMLE, Poisson QMLE, consistency and asymptotic normality. |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General > C01 - Econometrics C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C18 - Methodological Issues: General C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C51 - Model Construction and Estimation |
Item ID: | 76574 |
Depositing User: | Prof. Abdelhakim Aknouche |
Date Deposited: | 04 Feb 2017 08:48 |
Last Modified: | 28 Sep 2019 04:56 |
References: | Ahmad, A. and Francq, C. (2016). Poisson qmle of count time series models. Journal of Time Series Analysis, 37, 291-314. Aknouche, A. and Bendjeddou, S. (2017). Estimateur du quasi-maximum de vraisemblance géométrique d'une classe générale de modèles de séries chronologiques à valeurs entières. Comptes Rendus Mathematique, 355, 99-104. Al-Osh, M.A. and Alzaid, A.A. (1987). First-order integer-valued autoregressive (INAR(1)) process. Journal of Time Series Analysis, 8, 261-275. Benjamin, M.A., Rigby, R.A. and Stasinopoulos, D.M. (2003). Generalized autoregressive moving average models. Journal of the American Statistical Association, 98, 214-223. Billingsley, P. (2008). Probability and measure, 3rd edt, John Wiley. Bourguignon, M. (2016). Poisson-geometric INAR(1) process for modeling count time series with overdispersion. Statistica Neerlandica, 70, 176-192. Cameron, A.C. and Trivedi, P.K. (1986). Econometric models based on count data: Comparisons and applications of some estimators and tests. Journal of Applied Econometrics, 1, 29-53. Cameron, C. and Trivedi, P. (2013). Regression analysis of count data. Cambridge University Press, 2nd edt. New York. Chen, C.W.S., So, M., Li, J.C. and Sriboonchitta, S. (2016). Autoregressive conditional negative binomial model applied to over-dispersed time series of counts. Statistical Methodology, 31, 73-90. Christou, V. and Fokianos, K. (2014). Quasi-likelihood inference for negative binomial time series models. Journal of Time Series Analysis, 35, 55-78. Davis, R.A. and Liu, H. (2016). Theory and inference for a class of observation-driven models with application to time series of counts. Statistica Sinica, 26, 1673-1707. Davis, R., Wu, R. (2009). A negative binomial model for time series of counts. Biometrika, 96, 735-749. Davis, R.A., Dunsmuir, W.T.M. and Wang, Y. (1999). Modelling time series of count data. In Asymptotics, Nonparametrics and Time Series (edt. Subir Ghosh), Marcel Dekker. Davis, R.A., Holan, S.H., Lund, R. and Ravishanker, N. (2016). Handbook of discrete-valued time series. Chapman and Hall. Diop, M.L. and Kengne, W. (2016). Testing for parameter change in general integer-valued time series. Preprint, arXiv:1602.08654. Douc, R., Doukhan, P. and Moulines, E. (2013). Ergodicity of observation-driven time series models and consistency of the maximum likelihood estimator. Stochastic Processes and their Applications, 123, 2620-2647. Doukhan, P., Fokianos, K., and Tjøstheim, D. (2012). On weak dependence conditions for Poisson autoregressions. Statistics and Probability Letters, 82, 942-948. Doukhan, P. and Kengne, W. (2015). Inference and testing for structural change in general Poisson autoregressive models. Electronic Journal of Statistics, 9, 1267-1314. Doukhan, P. and Wintenberger, O. (2008). Weakly dependent chains with infinite memory. Stochastic Processes and their Applications, 118, 1997-2013. Ferland, R., Latour, A. and Oraichi, D. (2006). Integer-valued GARCH process. Journal of Time Series Analysis, 27, 923-942. Fokianos, K. (2012). Count time series models. Handbook in Statistics. Time Series Analysis: Methods and Applications, 30, 315-348. Fokianos, K., Rahbek, A. and Tjøstheim, D. (2009). Poisson autoregression. Journal of the American Statistical Association, 140, 1430-1439. Fokianos, K. and Tjøstheim, D. (2011). Log-linear Poisson autoregression. Journal of Multivariate Analysis, 102, 563-578. Heinen, A. (2003). Modelling time series count data: an autoregressive conditional Poisson model. Available at SSRN 1117187. Gonçalves, E., Mendes-Lopes, N. and Silva, F. (2015). Infinitely divisible distributions in integer-valued GARCH models. Journal of Time Series Analysis, 36, 503-527. Gourieroux, C., Monfort, A. and Trognon, A. (1984a). Pseudo maximum likelihood methods: Theory. Econometrica, 52, 681-700. Gourieroux, C., Monfort, A. and Trognon, A. (1984b). Pseudo maximum likelihood methods: Applications to Poisson models. Econometrica, 52, 681-700. Grunwald, G., Hyndman, R., Tedesco, L., and Tweedie, R. (2000). Non-Gaussian conditional linear AR(1) models. Australian and New Zealand Journal of Statistics, 42, 479-495. Kedem, B. and Fokianos, K. (2002). Regression models for time series analysis. Wiley, Hoboken, NJ. Kengne, W. (2015). Sequential change-point detection in Poisson autoregressive models. Journal de la Société Française de Statistique, 156, 98-112. McCullagh, P. and Nelder, J.A. (1989). Generalized Linear Models (2nd edt). London: Chapman &Hall. McKenzie, E. (1985). Some simple models for discrete variate time series. Water Resources Bulletin, 21, 645-650. McKenzie, E. (2003). Discrete variate time series, in: Handbook of statistics, Rao, C., Shanbhag, D. (Eds.), Elsevier Science, Amsterdam, 573-606. Nelder, J.A. and Wedderburn, R.W. (1972). Generalized Linear Models. Journal of the Royal Statistical Society, Series A, 135, 370-384. Silva, M.E. (2015). Modelling time series of counts: an INAR approach. Textos de Matemática, 47, 107-121. Steutel, F.W. and Van Harn, K. (1979). Discrete analogues of self-decomposability and stability. Annals of Probability, 5, 893-899. Wedderburn, R.W. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika, 61, 439-447. White, H. (1982). Maximum likelihood of misspecified models. Econometrica, 50, 1-25. Wooldridge, J.M. (1997). Quasi-likelihood methods for count data. In Handbook of Applied Econometrics, Volume 2, edt. M.H. Pesaran and P. Schmidt. Oxford: Blackwell, 352-406. Wooldridge, J.M. (2002). Econometric analysis of cross section and panel data. Cambridge, MA, MIT Press. Zeger, S.L. (1988). A regression model for time series of counts. Biometrika, 75, 621-629. Zeger, S.L. and Qaqish, B. (1988). Markov regression models for time series: a quasi-likelihood approach. Biometrics, 44, 1019-1031. Zhu, F. (2011). A negative binomial integer-valued GARCH model. Journal of Time Series Analysis, 32, 54-67. Zhu, F. (2012a). Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued GARCH models. Journal of Mathematical Analysis and its Applications, 389, 58-71. Zhu, F. (2012b). Zero-inflated Poisson and negative binomial integer-valued GARCH models. Journal of Statistical Planning and Inference, 142, 826-839. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/76574 |
Available Versions of this Item
- Negative binomial quasi-likelihood inference for general integer-valued time series models. (deposited 04 Feb 2017 08:48) [Currently Displayed]