Aknouche, Abdelhakim and Bendjeddou, Sara and Touche, Nassim (2016): Negative binomial quasi-likelihood inference for general integer-valued time series models. Forthcoming in: Journal of Time Series Analysis
This is the latest version of this item.
Preview |
PDF
MPRA_paper_83082.pdf Download (451kB) | Preview |
Abstract
Two negative binomial quasi-maximum likelihood estimates (NB-QMLE's) for a general class of count time series models are proposed. The first one is the profile NB-QMLE calculated while arbitrarily fixing the dispersion parameter of the negative binomial likelihood. The second one, termed two-stage NB-QMLE, consists of four stages estimating both conditional mean and dispersion parameters. It is shown that the two estimates are consistent and asymptotically Gaussian under mild conditions. Moreover, the two-stage NB-QMLE enjoys a certain asymptotic efficiency property provided that a negative binomial link function relating the conditional mean and conditional variance is specified. The proposed NB-QMLE's are compared with the Poisson QMLE asymptotically and in finite samples for various well-known particular classes of count time series models such as the (Poisson and negative binomial) Integer GARCH model and the INAR(1) model. Applications to two real datasets are given.
| Item Type: | MPRA Paper |
|---|---|
| Original Title: | Negative binomial quasi-likelihood inference for general integer-valued time series models |
| English Title: | Negative binomial quasi-likelihood inference for general integer-valued time series models |
| Language: | English |
| Keywords: | Integer-valued time series models, Integer GARCH, Integer AR, Generalized Linear Models, Quasi-likelihood, Geometric QMLE, Negative Binomial QMLE, Poisson QMLE, consistency and asymptotic normality. |
| Subjects: | C - Mathematical and Quantitative Methods > C0 - General > C01 - Econometrics C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C18 - Methodological Issues: General C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C51 - Model Construction and Estimation |
| Item ID: | 83082 |
| Depositing User: | Prof. Abdelhakim Aknouche |
| Date Deposited: | 04 Dec 2017 07:19 |
| Last Modified: | 01 Oct 2019 18:54 |
| References: | Ahmad A, Francq C. 2016. Poisson qmle of count time series models. Journal of Time Series Analysis 37: 291-314. Aknouche A, Bendjeddou S. 2017. Estimateur du quasi-maximum de vraisemblance géométrique d'une classe générale de modèles de séries chronologiques à valeurs entières. Comptes Rendus Mathematique 355: 99-104. Aknouche A, Bendjeddou S, Touche N. 2017. Negative binomial quasi-likelihood inference for general integer-valued time series models. Journal of Time Series Analysis, forthcoming, DOI: 10.1111/jtsa.12277. Al-Osh MA, Alzaid AA. 1987. First-order integer-valued autoregressive (INAR(1)) process. Journal of Time Series Analysis 8: 261-275. Benjamin MA, Rigby RA, Stasinopoulos DM. 2003. Generalized autoregressive moving average models. Journal of the American Statistical Association 98: 214-223. Billingsley P. 2008. Probability and measure (3rd edn). John Wiley. Bourguignon M. 2016. Poisson-geometric INAR(1) process for modeling count time series with overdispersion. Statistica Neerlandica 70: 176-192. Cameron AC, Trivedi PK. 1986. Econometric models based on count data: Comparisons and applications of some estimators and tests. Journal of Applied Econometrics 1: 29-53. Cameron C, Trivedi P. 2013. Regression analysis of count data (2nd edn). New York: Cambridge University Press. Chen CWS, So M, Li JC, Sriboonchitta S. 2016. Autoregressive conditional negative binomial model applied to over-dispersed time series of counts. Statistical Methodology 31: 73-90. Christou V, Fokianos K. 2014. Quasi-likelihood inference for negative binomial time series models. Journal of Time Series Analysis 35: 55-78. Christou V, Fokianos K. 2015. Estimation and testing linearity for non-linear mixed Poisson autoregressions. Electronic Journal of Statistics 9: 1357-1377. Davis RA, Liu H. 2016. Theory and inference for a class of observation-driven models with application to time series of counts. Statistica Sinica 26: 1673-1707. Davis R, Wu R. 2009. A negative binomial model for time series of counts. Biometrika 96: 735-749. Davis RA, Dunsmuir WTM, Wang Y. 1999. Modelling time series of count data. In Asymptotics, Nonparametrics and Time Series (edn, Subir Ghosh). New York: Taylor and Francis. Davis RA, Holan SH, Lund R, Ravishanker N. 2016. Handbook of discrete-valued time series. Chapman and Hall. Diop ML, Kengne W. 2017. Testing for parameter change in general integer-valued time series. Journal of Time Series Analysis 38: 880-894. Douc R, Doukhan P, Moulines E. 2013. Ergodicity of observation-driven time series models and consistency of the maximum likelihood estimator. Stochastic Processes and their Applications 123: 2620-2647. Doukhan P, Fokianos K, Tjøstheim D. 2012. On weak dependence conditions for Poisson autoregressions. Statistics and Probability Letters 82: 942-948. Doukhan P, Kengne W. 2015. Inference and testing for structural change in general Poisson autoregressive models. Electronic Journal of Statistics 9: 1267-1314. Doukhan P, Wintenberger O. 2008. Weakly dependent chains with infinite memory. Stochastic Processes and their Applications 118: 1997-2013. Efron B. 1986. Double exponential families and their use in generalized linear regression. Journal of the American Statistical Association 81: 709-721. Ferland R, Latour A, Oraichi D. 2006. Integer-valued GARCH process. Journal of Time Series Analysis 27: 923-942. Fokianos K. 2012. Count time series models. Handbook of Statistics. Time Series Analysis: Methods and Applications 30: 315-348. Fokianos K, Rahbek A, Tjøstheim D. 2009. Poisson autoregression. Journal of the American Statistical Association 140: 1430-1439. Fokianos K. Tjøstheim D. 2011. Log-linear Poisson autoregression. Journal of Multivariate Analysis 102: 563-578. Francq C, Zakoïan JM. 2010. GARCH models: Structure, statistical inference and financial applications. New York: Wiley. Franke J. 2010. Weak dependence of functional INGARCH processes. Technical report, University of Kaiserslautern. Heinen A. 2003. Modelling time series count data: an autoregressive conditional Poisson model. Available at SSRN 1117187. Gonçalves E, Mendes-Lopes N, Silva F. 2015. Infinitely divisible distributions in integer-valued GARCH models. Journal of Time Series Analysis 36: 503-527. Gourieroux C, Monfort A, Trognon A. 1984a. Pseudo maximum likelihood methods: Theory. Econometrica 52: 681-700. Gourieroux C, Monfort A, Trognon A. 1984b. Pseudo maximum likelihood methods: Applications to Poisson models. Econometrica 52: 701-720. Grunwald G, Hyndman R, Tedesco L, Tweedie R. 2000. Non-Gaussian conditional linear AR(1) models. Australian and New Zealand Journal of Statistics 42: 479-495. Hall P, Heyde CC. 1980. Martingale Limit Theory and its Applications. New York: Academic Press. Kedem B, Fokianos K. 2002. Regression models for time series analysis. New York: Wiley. Kengne W. 2015. Sequential change-point detection in Poisson autoregressive models. Journal de la Société Française de Statistique 156: 98-112. McCullagh P, Nelder JA. 1989. Generalized Linear Models (2nd edn). London: Chapman and Hall. McKenzie E. 1985. Some simple models for discrete variate time series. Water Resources Bulletin 21: 645-650. McKenzie E. 2003. Discrete variate time series, in Handbook of statistics. Amsterdam: Elsevier Science. Nelder JA, Wedderburn RW. 1972. Generalized Linear Models. Journal of the Royal Statistical Society, Series A 135: 370-384. Neumann MH. 2011. Absolute regularity and ergodicity of Poisson count processes. Bernoulli 17: 1268-1284. Rydberg TH, Shephard N. 2000. BIN models for trade-by-trade data. Modelling the number of trades in a fixed interval of time. In World Conference Econometric Society, 2000, Seattle. Contributed Paper 0740. Silva ME. 2015. Modelling time series of counts: an INAR approach. Textos de Matemática 47: 107-121. Steutel FW, Van Harn K. 1979. Discrete analogues of self-decomposability and stability. Annals of Probability 5: 893-899. Wedderburn RW. 1974. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61: 439-447. White H. 1982. Maximum likelihood of misspecified models. Econometrica 50: 1-25. Wooldridge JM. 1997. Quasi-likelihood methods for count data. In Handbook of Applied Econometrics. Oxford: Blackwell. Wooldridge JM. 2002. Econometric analysis of cross section and panel data. Cambridge, MA, MIT Press. Zeger SL. 1988. A regression model for time series of counts. Biometrika 75: 621-629. Zeger SL, Qaqish B. 1988. Markov regression models for time series: a quasi-likelihood approach. Biometrics 44: 1019-1031. Zhu F. 2011. A negative binomial integer-valued GARCH model. Journal of Time Series Analysis 32: 54-67. Zhu F. 2012a. Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued GARCH models. Journal of Mathematical Analysis and its Applications 389: 58-71. Zhu F. 2012b. Zero-inflated Poisson and negative binomial integer-valued GARCH models. Journal of Statistical Planning and Inference 142: 826-839. Zhu F. 2012c. Modeling time series of counts with COM-Poisson INGARCH models. Mathematical and Computer Modelling 56: 191-203. |
| URI: | https://mpra.ub.uni-muenchen.de/id/eprint/83082 |
Available Versions of this Item
-
Negative binomial quasi-likelihood inference for general integer-valued time series models. (deposited 04 Feb 2017 08:48)
- Negative binomial quasi-likelihood inference for general integer-valued time series models. (deposited 04 Dec 2017 07:19) [Currently Displayed]

