Finger, Robert and Hediger, Werner (2007): The Application of Robust Regression to a Production Function Comparison – the Example of Swiss Corn.
This is the latest version of this item.
Preview |
PDF
MPRA_paper_9097.pdf Download (396kB) | Preview |
Abstract
The adequate representation of crop response functions is crucial for agri-environmental modeling and analysis. So far, the evaluation of such functions focused on the comparison of different functional forms. The perspective is expanded in this article by considering an alternative regression method. This is motivated by the fact that exceptional crop yield observations (outliers) can cause misleading results if least squares regression is applied. We show that such outliers are adequately treated if robust regression is used instead. The example of simulated Swiss corn yields shows that the use of robust regression narrows the range of optimal input levels across different functional forms and reduces potential costs of misspecification.
Item Type: | MPRA Paper |
---|---|
Institution: | ETH Zürich, Institute for Environmental Decisions |
Original Title: | The Application of Robust Regression to a Production Function Comparison – the Example of Swiss Corn |
Language: | English |
Keywords: | production function estimation; production function comparison; robust regression; crop response |
Subjects: | Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q12 - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C67 - Input-Output Models C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture D - Microeconomics > D2 - Production and Organizations > D24 - Production ; Cost ; Capital ; Capital, Total Factor, and Multifactor Productivity ; Capacity C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General |
Item ID: | 9097 |
Depositing User: | Robert Finger |
Date Deposited: | 16 Jun 2008 07:13 |
Last Modified: | 03 Oct 2019 22:51 |
References: | Ackello-Ogutu, C., Paris, Q. and Williams, W. A. (1985). Testing a von Liebig Crop Response Function against Polynomial Specifications. American Journal of Agricultural Economics, 67, 873-880. Alivelu, K., Srivastava, S., Rao, A. S., Singh, K. N., Selvakumari, G. and Raju, N.S. (2003). Comparison of Modified Mitscherlich and Response Plateau Models for Calibrating Soil Test Based Nitrogen Recommendations for Rice on Typic Ustropept. Communications in Soil and Science and Plant Analysis, 34, 2633–2643. Anderson, R. L. and Nelson, L. A. (1975). A Family of Models Involving Intersecting Straight Lines and Concomitant Experimental Designs Useful in Evaluating Response to Fertilizer Nutrients. Biometrics, 31, 303-318. Bélanger, G., Walsh, J. R., Richards, J. E., Milburn, P. H. and Ziadi, N. (2000). Comparison of Three Statistical Models Describing Potato Yield Response to Nitrogen Fertilizer. Agronomy Journal, 92, 902-908. Berck, P. and Helfand, G. (1990). Reconciling the von Liebig and Differentiable Crop Production Functions. American Journal of Agricultural Economics, 72, 985-996. Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A. D., Friedlingstein, P., Grunwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J.M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J.F., Sanz, M.J., Schulze, E.D., Versala, T. and Valentini, R. (2005): Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437: 529 - 533. Finger, R. and Schmid, S. (2007): The Impact of Climate Change on Mean and Variability of Swiss Corn Production. Schriftenreihe der Gruppe Agrar-, Lebensmittel- und Umweltökonomie, ETH Zürich, No. 2007/1. www.iaw.agrl.ethz.ch/research/publikationen/Finger_Schmid_Nov2007.pdf Finger, R. and Schmid, S. (2008). Modeling Agricultural Production Risk and the Adaptation to Climate Change. Agricultural Finance Review 68, 25-41. Frank, M. D., Beattie, B. R. and Embleton, M. E. (1990). A Comparison of Alternative Crop Response Models. American Journal of Agricultural Economics, 72, 597-603. Fuchs, C. and Löthe, K. (1996). Einfluss der Form von Produktionsfunktionen auf die Ermittlung der optimalen speziellen Intensität und die ökologischen Wirkungen in der Pflanzenproduktion. Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues 32, 493-502. Fuhrer, J., Beniston, M., Fischlin, A., Frei, C., Goyette, S., Jasper, K. and Pfister, C. (2006): Climate risks and their impact on agriculture and forests in Switzerland. Climatic Change 79: 79-102. Godard, C., Roger-Estrade, J., Jayet, P.A., Brisson, N. and Le Bas, C. (2008). Use of available information at a European level to construct crop nitrogen response curves for the regions of the EU. Agricultural Systems 97, 68-82. Hampel, F. R. (2002). Robust Inference. In: A. H. El-Shaarawi and W. W. Piegorsch (Eds.), Encyclopedia of Environmetrics, 1865–1885. Wiley and Sons, New York. Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W. A. (1986). Robust Statistics. Wiley and Sons, New York. Heady, E.O. and Dillon, J.L. (1961). Agricultural Production Functions. Iowa State University Press, Ames. Hogg, R. V. (1979). Statistical Robustness: One View of its use in Application Today. The American Statistician, 33, 108-115. Huber, P. J. (1996). Robust Statistical Procedures. Society for Industrial and Applied Mathematics, Philadelphia. Hubert, M., Rousseeuw, P.J. and Van Aelst, S. (2004a). Robustness. In: B. Sundt and J. Teugels (Eds.), Encyclopedia of Actuarial Science, 1515-1529. Wiley and Sons, New York. Hubert, M., Pison, G., Struyf, A. and van Aelst, S. (Eds.) (2004b). Theory and Applications of Recent Robust Methods. Birkhäuser Verlag, Basel. Jalota, S.K., Sood, A., Vitale, J.D. and Srinivasan, R. (2007). Simulated Crop Yield Response to Irrigation Water and Economic Analysis: Increasing Irrigated Water Use Efficiency in the Indian Punjab. Agronomy Journal, 99, 1073-1084. Johnston, J. and DiNardo, J. (1997). Econometric Methods, Fourth Edition. The McGraw-Hill Companies, New York. Just, R.E. and Pope, R.D. (1979). Production Function Estimation and Related Risk Considerations. American Journal of Agricultural Economics, 61, 276-284. LBL (1993). Preiskatalog. Landwirtschaftliche Beratungszentrale Lindau (LBL, Swiss Center for Agricultural Extension), Lindau, Switzerland. Llewelyn, R. V. and Featherstone, A. M. (1997). A Comparison of Crop Production Functions Using Simulated Data for Irrigated Corn in Western Kansas. Agricultural Systems, 54, 521-538. Medellín-Azuara, J., Harou, J.J., Olivares, M.A., Madani, K., Lund, J.R., Howitt, R.E., Tanaka, S.K., Jenkins, M.W. and Zhu, T. (2008). Adaptability and adaptations of California’s water supply system to dry climate warming. Climatic Change 87, 75-90. Meinke, H., Baethgen, W.E., Carberry, P.S., Donatelli, M., Hammer, G.L., Selvaraju, R. and Stöckle, C.O. (2001). Increasing profits and reducing risks in crop production using participatory systems simulation approaches. Agricultural Systems, 70, 493-513. Moré, J.J. (1978). The Levenberg-Marquardt algorithm Implementation and Theory. In G. Watson (Ed.), Lecture Notes in Mathematics 630, 105-116. Springer, Berlin. Paris, Q. (1992). The von Liebig Hypothesis. American Journal of Agricultural Economics, 74, 1019-1028. Rajsic, P. and Weersink, A. (2008). Do farmers waste fertilizer? A comparison of ex post optimal nitrogen rates and ex ante recommendations by model, site and year, Agricultural Systems 97, 56-67. Rousseeuw, P. J. and Leroy, A. M. (1987). Robust regression and outlier detection. Wiley and Sons, New York. SAS Institute (2004). SAS/STAT 9.1 User's Guide. SAS Institute Inc., Cary, NC. Schabenberger, O., Tharp, B. E., Kells, J. J. and Penner, D. (1999). Statistical Tests for Hormesis and Effective Dosages in Herbicide Dose Response. Agronomy Journal 91, 713-721. SBV (1982-2004). Statistische Erhebungen und Schätzungen über Landwirtschaft und Ernährung. Schweizer Bauernverband (SBV, Swiss Farmers’ Union), Brugg, Switzerland. Stöckle, C. O., Donatelli, M. and Nelson, R. (2003). CropSyst, a cropping systems simulation model. European Journal of Agronomy, 18, 289-307. Sturm, J.-E. and de Haan, J. (2001). How robust is the relationship between economic freedom and economic growth? Applied Economics, 33, 839-844. Swinton, S. M. and King, R. P. (1991). Evaluating Robust Regression Techniques for Detrending Crop Yield Data with Nonnormal Errors. American Journal of Agricultural Economics, 73, 446-451. Torriani, D. S., Calanca, P., Schmid, S., Beniston, M. and Fuhrer, J. (2007). Potential effects of changes in mean climate and climate variability on the yield of winter and spring crops in Switzerland. Climate Research, 34, 59-69. Yadav, R.L., Singh, V.K., Dwivedi, B.S. and Shukla, A.K. (2003). Wheat productivity and N use-efficiency as influenced by inclusion of cowpea as grain legume in a rice-wheat system. Journal of Agricultural Science 141, 213-220. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/9097 |
Available Versions of this Item
-
The Application of Robust Regression to a Production Function Comparison – the Example of Swiss Corn. (deposited 01 Nov 2007)
- The Application of Robust Regression to a Production Function Comparison – the Example of Swiss Corn. (deposited 16 Jun 2008 07:13) [Currently Displayed]