Voisin, Elisa and Hecq, Alain (2019): Forecasting bubbles with mixed causal-noncausal autoregressive models.
PDF
MPRA_paper_92734.pdf Download (1MB) |
Abstract
This paper investigates one-step ahead density forecasts of mixed causal-noncausal models. We compare the sample-based and the simulations-based approaches respectively developed by Gouriéroux and Jasiak (2016) and Lanne, Luoto, and Saikkonen (2012). We focus on explosive episodes and therefore on predicting turning points of bubbles bursts. We suggest the use of both methods to construct investment strategies based on how much probabilities are induced by the assumed model and by past behaviours. We illustrate our analysis on Nickel prices series.
Item Type: | MPRA Paper |
---|---|
Original Title: | Forecasting bubbles with mixed causal-noncausal autoregressive models |
Language: | English |
Keywords: | Noncausal models, forecasting, predictive densities, bubbles, simulations-based forecasts |
Subjects: | C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics |
Item ID: | 92734 |
Depositing User: | Elisa Voisin |
Date Deposited: | 15 Mar 2019 16:41 |
Last Modified: | 03 Oct 2019 01:24 |
References: | Andrews, B., Davis, R., and Breidt, J. (2006). Maximum likelihood estimation for all-pass time series models. Journal of Multivariate Analysis, 97(7), 1638–1659. Fries, S. (2018). Conditional moments of anticipativeα-stable markov processes. arXiv preprint arXiv:1805.05397. Fries, S., and Zakoïan, J.-M. (2019). Mixed causal-noncausal AR processes and the modelling of explosive bubbles. Econometric Theory, 1–37. Gouriéroux, C., Hencic, A., and Jasiak, J. (2018). Forecast performance in noncausal MAR(1, 1) processes. Gouriéroux, C., and Jasiak, J. (2016). Filtering, prediction and simulation methods for noncausal processes. Journal of Time Series Analysis, 37(3), 405–430. Gouriéroux, C., and Jasiak, J. (2018). Misspecification of noncausal order in autoregressive processes. Journal of Econometrics, 205(1), 226–248. Gouriéroux, C., Jasiak, J., and Monfort, A. (2016). Stationary bubble equilibria in rational expectation models. CREST Working Paper. Paris, France: Centre de Recherche en Economie et Statistique. Gouriéroux, C., and Zakoïan, J.-M. (2013). Explosive bubble modelling by noncausal process .CREST. Paris, France: Centre de Recherche en Economie et Statistique. Gouriéroux, C., and Zakoïan, J.-M. (2017). Local explosion modelling by non-causal process. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3), 737–756. Hecq, A., Lieb, L., and Telg, S. (2016). Identification of mixed causal-noncausal models in finite samples. Annals of Economics and Statistics/Annales d’ ́Economie et de Statistique (123/124), 307–331. Hecq, A., Telg, S., and Lieb, L. (2017). Do seasonal adjustments induce noncausal dynamics in inflation rates? Econometrics, 5(4), 48. Hencic, A., and Gouriéroux, C. (2015). Noncausal autoregressive model inapplication to bitcoin/ exchange rates. In Econometrics of risk (pp.17–40). Springer. Lanne, M., Luoto, J., and Saikkonen, P. (2012). Optimal forecasting of non-causal autoregressive time series. International Journal of Forecasting, 28(3), 623–631. Lanne, M., and Saikkonen, P. (2011). Noncausal autoregressions for economic time series. Journal of Time Series Econometrics, 3(3). |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/92734 |
Available Versions of this Item
- Forecasting bubbles with mixed causal-noncausal autoregressive models. (deposited 15 Mar 2019 16:41) [Currently Displayed]