Gallic, Ewen and Vermandel, Gauthier (2017): Weather Shocks.
This is the latest version of this item.
PDF
MPRA_paper_93905.pdf Download (1MB) |
Abstract
How much do weather shocks matter? The literature addresses this question in two isolated ways: either by looking at long-term effects through the prism of theoretical models, or by focusing on short-term effects using empirical analysis. We propose a framework to bring together both the short and long-term effects through the lens of an estimated DSGE model with a weather-dependent agricultural sector. The model is estimated using Bayesian methods and quarterly data for New Zealand using the weather as an observable variable. In the short-run, our analysis underlines the key role of weather as a driver of business cycles over the sample period. An adverse weather shock generates a recession, boosts the non-agricultural sector and entails a domestic currency depreciation. Taking a long-term perspective, a welfare analysis reveals that weather shocks are not a free lunch: the welfare cost of weather is currently estimated at 0.19% of permanent consumption. Climate change critically increases the variability of key macroeconomic variables (such as GDP, agricultural output or the real exchange rate) resulting in a higher welfare cost peaking to 0.29% in the worst case scenario.
Item Type: | MPRA Paper |
---|---|
Original Title: | Weather Shocks |
English Title: | Weather Shocks |
Language: | English |
Keywords: | Business Cycles; Climate Change; Weather Shocks; DSGE |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C11 - Bayesian Analysis: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General E - Macroeconomics and Monetary Economics > E3 - Prices, Business Fluctuations, and Cycles > E32 - Business Fluctuations ; Cycles E - Macroeconomics and Monetary Economics > E3 - Prices, Business Fluctuations, and Cycles > E37 - Forecasting and Simulation: Models and Applications Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q54 - Climate ; Natural Disasters and Their Management ; Global Warming |
Item ID: | 93905 |
Depositing User: | Dr Gauthier Vermandel |
Date Deposited: | 14 May 2019 14:32 |
Last Modified: | 28 Sep 2019 13:59 |
References: | Acevedo, S., Mrkaic, M., Novta, N., Poplawski-Ribeiro, M., Pugacheva, E., Topalova, P., 2017. The Effects of Weather Shocks on Economic Activity: How Can Low-Income Countries Cope? World Economic Outlook, Chapter 3. International Monetary Fund. Adjemian, S., Bastani, H., Juillard, M., Mihoubi, F., Perendia, G., Ratto, M., Villemot, S., 2011. Dynare: Reference manual, version 4. Dynare Working Papers 1. Adolfson, M., Laséen, S., Lindé, J., Villani, M., 2007. Bayesian estimation of an open economy dsge model with in complete pass-through. Journal of International Economics 72 (2), 481-511, doi:10.1016/j.jinteco.2007.01.003. Adolfson, M., Laséen, S., Lindé, J., Villani, M., 2008. Evaluating an estimated new keynesian small open economy model. Journal of Economic Dynamics and Control 32 (8), 2690-2721, doi:10.1016/j.jedc.2007.09.012. An, S., Schorfheide, F., 2007. Bayesian analysis of DSGE models. Econometric reviews 26 (2-4), 113-172, doi:10.1080/07474930701220071. Bloor, C., Matheson, T., 2010. Analysing shock transmission in a data-rich environment: a large BVAR for New Zealand. Empirical Economics 39 (2), 537-558, doi:10.1007/s00181-009-0317-3. Brooks, S. P., Gelman, A., 1998. General methods for monitoring convergence of iterative simulations. Journal of computational and graphical statistics 7 (4), 434-455, doi:10.1080/10618600.1998.10474787. Buckle, R. A., Kim, K., Kirkham, H., McLellan, N., Sharma, J., 2007. A structural VAR business cycle model for a volatile small open economy. Economic Modelling 24 (6), 990-1017, doi:10.1016/j.econmod.2007.04.003. Burke, M., Hsiang, S. M., Miguel, E., oct 2015. Global non-linear effect of temperature on economic production. Nature 527 (7577), 235-239, doi:0.1038/nature15725. Cai, Y., Lontzek, T., 2019. The social cost of carbon with economic and climate risks. Journal of Political Economy . Cashin, P., Mohaddes, K., Raissi, M., may 2017. Fair weather or foul? the macroeconomic effects of el ni˜no. Journal of International Economics 106, 37-54, doi:10.1016/j.jinteco.2017.01.010. Chavas, J.-P., Chambers, R. G., Pope, R. D., 2010. Production economics and farm management: a century of contributions. American Journal of Agricultural Economics 92 (2), 356-375. Christiano, L. J., Eichenbaum, M., Evans, C. L., 2005. Nominal rigidities and the dynamic effects of a shock to monetary policy. Journal of political Economy 113 (1), 1-45, doi:10.1086/426038. Cushman, D. O., Zha, T., 1997. Identifying monetary policy in a small open economy under flexible exchange rates. Journal of Monetary economics 39 (3), 433-448, doi:10.1016/S0304-3932(97)00029-9. Dell, M., Jones, B. F., Olken, B. A., jul 2012. Temperature shocks and economic growth: Evidence from the last half century. American Economic Journal: Macroeconomics 4 (3), 66-95, doi:10.1257/mac.4.3.66. Deschenes, O., Greenstone, M., 2007. The economic impacts of climate change: evidence from agricultural output and random fluctuations in weather. The American Economic Review , 354-385doi:10.1257/aer.97.1.354. Donadelli, M., Jüppner, M., Riedel, M., Schlag, C., sep 2017. Temperature shocks and welfare costs. Journal of Economic Dynamics and Control 82, 331-355, doi:10.1016/j.jedc.2017.07.003. Doorenbos, J., Kassam, A., 1979. Yield response to water. Irrigation and drainage paper 33, 257. Echevarr´ıa, C., 1998. A three-factor agricultural production function: the case of Canada. International Economic Journal 12 (3), 63-75, doi:10.1080/10168739800080022. Fomby, T., Ikeda, Y., Loayza, N. V., 2013. The growth aftermath of natural disasters. Journal of Applied Econometrics 28 (3), 412-434, doi:10.1002/jae.1273. Gerard, P., Barringer, J., Charles, J., Fowler, S., Kean, J., Phillips, C., Tait, A., Walker, G., 2013. Potential effects of climate change on biological control systems: case studies from New Zealand. BioControl 58 (2), 149-162, doi:10.1007/s10526-012-9480-0. Geweke, J., 1999. Using simulation methods for bayesian econometric models: inference, development, and communication. Econometric reviews 18 (1), 1-73, doi:10.1080/07474939908800428. Hane, D. C., Pumphrey, F. V., et al., 1984. Crop water use curves for irrigation scheduling . Horvath, M., 2000. Sectoral shocks and aggregate fluctuations. Journal of Monetary Economics 45 (1), 69-106, doi:10.1016/s0304-3932(99)00044-6. Iacoviello, M., Neri, S., 2010. Housing market spillovers: evidence from an estimated DSGE model. American Economic Journal: Macroeconomics 2 (2), 125-164, doi:10.1257/mac.2.2.125. IPCC, 2014. Fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press . IPCC, 2014. Summary for Policymakers. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Iskrev, N., 2010. Local identification in DSGE models. Journal of Monetary Economics 57 (2), 189-202, doi:10.1016/j.jmoneco.2009.12.007. Justiniano, A., Preston, B., 2010a. Can structural small open-economy models account for the influence of foreign disturbances? Journal of International Economics 81 (1), 61-74. Justiniano, A., Preston, B., 2010b. Monetary policy and uncertainty in an empirical small open-economy model. Journal of Applied Econometrics 25 (1), 93-128. Kamber, G., McDonald, C., Price, G., et al., 2013. Drying out: Investigating the economic effects of drought in New Zealand. Reserve Bank of New Zealand Analytical Note Series No. AN2013/02, Reserve Bank of New Zealand, Wellington, New Zealand . Kydland, F. E., Prescott, E. C., 1982. Time to build and aggregate fluctuations. Econometrica: Journal of the Econometric Society , 1345-1370. Lubik, T. A., dec 2006. A simple, structural, and empirical model of the antipodean transmission mechanism. New Zealand Economic Papers 40 (2), 91-126, doi:10.1080/00779954.2006.9558557. Lucas, R. E., 1978. Asset prices in an exchange economy. Econometrica: Journal of the Econometric Society , 1429-1445doi:10.2307/1913837. Lucas, R. E., 2003. Macroeconomic priorities. American Economic Review 93 (1), 1-14, doi:10.1257/000282803321455133. Lucas, R. J., 1987. Models of business cycles. Vol. 26. Basil Blackwell Oxford. Mejia, M. S. A., Mrkaic, M. M., Novta, N., Pugacheva, E., Topalova, P., 2018. The Effects of Weather Shocks on Economic Activity: What are the Channels of Impact? International Monetary Fund. Mundlak, Y., 1961. Empirical production function free of management bias. Journal of Farm Economics 43 (1), 44-56. Mundlak, Y., 2001. Production and supply. Handbook of agricultural economics 1, 3-85, doi:10.1016/s1574 0072(01)10004-6. Narasimhan, B., Srinivasan, R., 2005. Development and evaluation of soil moisture deficit index (SMDI) and evap otranspiration deficit index (ETDI) for agricultural drought monitoring. Agricultural and Forest Meteorology 133 (1), 69-88, doi:10.1016/j.agrformet.2005.07.012. Nordhaus, W., 2018a. Evolution of modeling of the economics of global warming: Changes in the dice model, 1992-2017. Climatic change 148 (4), 623-640. Nordhaus, W., 2018b. Projections and uncertainties about climate change in an era of minimal climate policies. American Economic Journal: Economic Policy 10 (3), 333-60. Nordhaus, W. D., 1991. To slow or not to slow: the economics of the greenhouse effect. The economic journal 101 (407), 920-937, doi:10.2307/2233864. Nordhaus, W. D., Yang, Z., 1996. A regional dynamic general-equilibrium model of alternative climate-change strategies. The American Economic Review , 741-765. Otrok, C., 2001. On measuring the welfare cost of business cycles. Journal of Monetary Economics 47 (1), 61-92, doi:10.1016/s0304-3932(00)00052-0. Pindyck, R. S., 2017. The use and misuse of models for climate policy. Review of Environmental Economics and Policy 11 (1), 100-114, doi:10.1093/reep/rew012. Rabanal, P., 2007. Does inflation increase after a monetary policy tightening? Answers based on an estimated DSGE model. Journal of Economic Dynamics and Control 31 (3), 906-937, doi:10.1016/j.jedc.2006.01.008. Restuccia, D., Yang, D. T., Zhu, X., 2008. Agriculture and aggregate productivity: A quantitative cross-country analysis. Journal of Monetary Economics 55 (2), 234-250, doi:10.1016/j.jmoneco.2007.11.006. Rosen, S., Murphy, K. M., Scheinkman, J. A., 1994. Cattle cycles. Journal of Political Economy 102 (3), 468-492. Schmitt-Grohé, S., Uribe, M., 2003. Closing small open economy models. Journal of international Economics 61 (1), 163-185, doi:10.1016/s0022-1996(02)00056-9. Smets, F., Wouters, R., 2007. Shocks and frictions in US business cycles: A Bayesian DSGE approach. American Economic Review 97 (3), 586-606, doi:10.1257/aer.97.3.586. Wheeler, T., Von Braun, J., 2013. Climate change impacts on global food security. Science 341 (6145), 508-513, doi:10.1126/science.1239402. A Building Projections up to 2100 To investigate the potential impact of climate change on aggregate fluctuations, we assume that the volatility the weather (ηtW ) (Equation 1) will be affected by climate change. Instead of arbitrarily setting a value for this shift, we provide an approximation using a proxy for the drought index. To do so, we rely on monthly climatic data simulated from a circulation climate model, the Community Climate System Model (CCSM). The resolution of the dataset is a 0.9◦ × 1.25◦ grid. Simulated data are divided into two sets: one of historical data up to 2005 and one of projected data from 2006 to 2100. The projected data are given for four scenarios of greenhouse gas concentration trajectories, the so-called Representative Concentration Pathways (RCPs). The first three, i.e., the RCPs of 2.6, 4.5 and 6.0, are characterized by increasing greenhouse gas concentrations, which peak and then decline. The date of this peak varies among scenarios: around 2020 for the RCP 2.6 scenario, around 2040 for the RCP 4.5 and around 2080 for the RCP 6.0. The last scenario, the doom and gloom 8.5 pathway, is based on |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/93905 |
Available Versions of this Item
-
Weather Shocks, Climate Change and Business Cycles. (deposited 11 Sep 2017 13:25)
-
Weather Shocks, Climate Change and Business Cycles. (deposited 14 May 2019 14:27)
- Weather Shocks. (deposited 14 May 2019 14:32) [Currently Displayed]
-
Weather Shocks, Climate Change and Business Cycles. (deposited 14 May 2019 14:27)