Carbajal-De-Nova, Carolina and Venegas-Martínez, Francisco (2019): Synthetic Estimation of Dynamic Panel Models When Either N or T or Both Are Not Large: Bias Decomposition in Systematic and Random Components.
PDF
MPRA_paper_94405.pdf Download (290kB) |
Abstract
By increasing the dimensions N or T, or both, in data panel analysis, bias can be reduced asymptotically to zero. This research deals with an econometric methodology to separate and measure bias through synthetic estimators without altering the data panel dimensions. This is done by recursively decomposing bias in systematic and random components. The methodology provides consistent synthetic estimators.
Item Type: | MPRA Paper |
---|---|
Original Title: | Synthetic Estimation of Dynamic Panel Models When Either N or T or Both Are Not Large: Bias Decomposition in Systematic and Random Components |
Language: | English |
Keywords: | panel data models; bias analysis; econometric modeling |
Subjects: | C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C51 - Model Construction and Estimation |
Item ID: | 94405 |
Depositing User: | Dr. Francisco Venegas-Martínez |
Date Deposited: | 10 Jun 2019 08:54 |
Last Modified: | 26 Sep 2019 22:08 |
References: | Aali-Bujari, A. F. Venegas-Martínez and A. O. Palafox-Roca (2017). Impact of Energy Consumption on Economic Growth in Major OECD Economies (1977-2014): A Panel Data Approach. International Journal of Energy Economics and Policy. 7(2), 18-25. Aali-Bujari, A., F. Venegas-Martínez, and G. Pérez-Lechuga (2017). Impact of the Stock Market Capitalization and the Banking Spread in Growth and Development in Latin American: A Panel Data Estimation with System GMM. Revista Contaduría y Administración, 62(5), 1427–1441. Aali-Bujari, A., F. Venegas-Martínez and G. Pérez-Lechuga (2016). Impact of Derivatives Markets on Economic Growth in Some of the Major World Economies: A Difference-GMM Panel Data Estimation (2002-2014). AESTIMATIO: The International Journal of Finance, 12, 110-127. Abadie, A. and G.W. Imbens (2011). “Bias-Corrected Matching Estimators for Average Treatment Effects.” Journal of Business and Economic Statistics, 29(1), 1-11. Alvarez, J. and M. Arellano (2003). “The Time Series and Cross-Section Asymptotic of Dynamic Panel Data Estimators.” Econometrica, 71(4), 1121-1159. Anderson, T.W. and C. Hsiao (1981). “Estimation of Dynamic Models with Error Components.” Journal of the American Statistical Association, 76(375), 598-606. Arellano, M. and S. Bond (1991). “Some Test of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations.” The Review of Economic Studies, 58(2), 277-297. Atenafu, E., J.S. Hamid, T. To, A.R. Willan, B.M. Feldman, and J. Beyene (2012). “Bias-Corrected Estimator for Intraclass Correlation Coefficient in the Balanced one-way Random Effects Model.” BMC Medical Research Methodology, 1471-2288(12), 1-8. Carbajal-De-Nova, C. (2014). Synthetic Data: An Endogeneity Simulation Working Paper Universidad Autónoma Metropolitana, Iztapalapa. Douc, R, E. Moulines, and David Stoffer (2014). Nonlinear Time Series: Theory, Methods and Applications with R Examples Boca Raton: CRC Press. Hahn, J. and G. Kuersteiner (2002). “Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects when both N and T are large.” Econometrica, 70(4), 1639-1657. Hsiao, C., M.H. Pesaran and A.K. Tahmiscioglu (2002). “Maximum Likelihood Estimation of Fixed Effects Dynamic Panel Data Model Covering Short Time Periods.” Journal of Econometrics, 109(1), 107-150. Hsiao, C. 2003. Analysis of Panel Data. UK, Cambridge University Press. Hsiao, C. and A.K. Tahmiscioglu (2008). “Estimation of Dynamic Panel Data Models with both Individual and Time-specific effects.” Journal of Statistics Planning Inference, 138(9), 2698-2721. Hsiao, C., and J. Zhang (2015). “IV, GMM or Likelihood Approach to Estimate Dynamic Panel Models when either N or T or both are Large.” Journal of Econometrics, 187(1), 312-322. MacKinnon, J.G., and Jr. A.A. Smith (1998). “Approximate Bias Correction in Econometrics.” Journal of Econometrics, 85(2), 205-230. Makowski, D., Daniel Wallach, Bruno Andrieu, and Marie-Helene Jeuffroy (1999). “Parameter Estimation for Crop Models.” Working with Dynamic Crop Models. (Daniel Wallach, David Makowski, James W. Jones, and François Brun editors) San Francisco: Elsevier. Salazar-Núñez, H. F. y F. Venegas-Martínez (2018). Impacto del uso de energía y la formación bruta de capital en el crecimiento económico: análisis de datos panel en 73 países agrupados por nivel de ingreso y producción de petróleo. El Trimestre Económico, 85(2-338), 341-364. Salazar-Núñez, H. F. y F. Venegas-Martínez (2018). Impacto del consumo de energía y del valor agregado de las manufacturas en el crecimiento económico de los países que integran el TLCAN: un modelo de datos panel cointegrado con cambio estructural. Economía Teoría y Práctica, 4(Número Especial), 77-102. Spanos, A. 1999. Probability Theory and Statistical Inference. Econometric Modeling with Observational Data. Cambridge: Cambridge University Press. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/94405 |