Munich Personal RePEc Archive

Forecasting Realized Volatility of Agricultural Commodities

Degiannakis, Stavros and Filis, George and Klein, Tony and Walther, Thomas (2019): Forecasting Realized Volatility of Agricultural Commodities. Forthcoming in: International Journal of Forecasting

[img]
Preview
PDF
MPRA_paper_96267.pdf

Download (605kB) | Preview

Abstract

We forecast the realized and median realized volatility of agricultural commodities using variants of the Heterogeneous AutoRegressive (HAR) model. We obtain tick-by-tick data for five widely traded agricultural commodities (Corn, Rough Rice, Soybeans, Sugar, and Wheat) from the CME/ICE. Real out-of-sample forecasts are produced for 1- up to 66-days ahead. Our in-sample analysis shows that the variants of the HAR model which decompose volatility measures into their continuous path and jump components and incorporate leverage effects offer better fitting in the predictive regressions. However, we convincingly demonstrate that such HAR extensions do not offer any superior predictive ability in the out-of-sample results, since none of these extensions produce significantly better forecasts compared to the simple HAR model. Our results remain robust even when we evaluate them in a Value-at-Risk framework. Thus, there is no benefit by adding more complexity, related to volatility decomposition or relative transformations of volatility, in the forecasting models.

UB_LMU-Logo
MPRA is a RePEc service hosted by
the Munich University Library in Germany.