Yilanci, Veli and Aydin, Mücahit and Aydin, Mehmet (2019): Residual Augmented Fourier ADF Unit Root Test.
Preview |
PDF
MPRA_paper_96797.pdf Download (1MB) | Preview |
Abstract
This paper proposes a residual-based unit root test in the presence of smooth structural changes approximated by a Fourier function. While Fourier Augmented Dickey Fuller test that introduced by Enders and Lee (2012a) allows smooth changes of the unknown form, the Residual Augmented Least Squares procedure use additional higher moment information found in non-normal errors. The test offers a simple way to accommodate an unknown number and form of structural breaks and have good size and power properties in the case of non-normal errors.
Item Type: | MPRA Paper |
---|---|
Original Title: | Residual Augmented Fourier ADF Unit Root Test |
English Title: | Residual Augmented Fourier ADF Unit Root Test |
Language: | English |
Keywords: | Non-normal errors, Fourier Function, Unit root. |
Subjects: | C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes F - International Economics > F3 - International Finance > F31 - Foreign Exchange |
Item ID: | 96797 |
Depositing User: | Veli YILANCI |
Date Deposited: | 05 Nov 2019 17:20 |
Last Modified: | 05 Nov 2019 17:20 |
References: | Banerjee, A., Lumsdaine, R. L. ve Stock, J.H. (1992), Recursive and Sequential Tests of the Unit Root and Trend-Break Hypothesis: Theory and International Evidence, Journal of Business and Economic Statistics, 10, 271-287. Becker, R., Enders, W., & Hurn, S. (2004). A general test for time dependence in parameters. Journal of Applied Econometrics, 19(7), 899-906. Becker, R., Enders, W., & Lee, J. (2006). A stationarity test in the presence of an unknown number of smooth breaks. Journal of Time Series Analysis, 27(3), 381-409. Clemente, J., Montañés, A., ve Reyes, M. (1998). Testing for a unit root in variables with a double change in the mean, Economics Letters, 59, 175-182. Enders, W., & Lee, J. (2012a). The flexible Fourier form and Dickey–Fuller type unit root tests. Economics Letters, 117(1), 196-199. Enders, W., & Lee, J. (2012b). A unit root test using a Fourier series to approximate smooth breaks. Oxford bulletin of Economics and Statistics, 74(4), 574-599. Gallant, A. R. (1981). On the bias in flexible functional forms and an essentially unbiased form: the Fourier flexible form. Journal of Econometrics, 15(2), 211-245. Im, K. S., & Schmidt, P. (2008). More efficient estimation under non-normality when higher moments do not depend on the regressors, using residual augmented least squares. Journal of Econometrics, 144(1), 219-233. Im, K. S., Lee, J., & Tieslau, M. A. (2014). More powerful unit root tests with non-normal errors. In Festschrift in Honor of Peter Schmidt (pp. 315-342). Springer, New York. Kapetanios, G., Shin, Y., & Snell, A. (2003). Testing for a unit root in the nonlinear STAR framework. Journal of econometrics, 112(2), 359-379. Lanne, M., Lütkepohl, H., & Saikkonen, P. (2002). Comparison of unit root tests for time series with level shifts. Journal of time series analysis, 23(6), 667-685. Lee, H., Lee, J., & Im, K. (2015). More powerful cointegration tests with non-normal errors. Studies in Nonlinear Dynamics & Econometrics, 19(4), 397-413. Lee, J., & Strazicich, M. (2013). Minimum LM unit root test with one structural break. Economics Bulletin, 33(4), 2483-2492. Lee, J., & Strazicich, M. C. (2003). Minimum Lagrange multiplier unit root test with two structural breaks. Review of economics and statistics, 85(4), 1082-1089. Leybourne, S., Newbold, P., & Vougas, D. (1998). Unit roots and smooth transitions. Journal of time series analysis, 19(1), 83-97. Libanio, G. A. (2005). Unit roots in macroeconomic time series: theory, implications, and evidence. Nova Economia, 15(3), 145-176. Lumsdaine, R. L., & Papell, D. H. (1997). Multiple trend breaks and the unit-root hypothesis. Review of economics and Statistics, 79(2), 212-218. Meng, M. (2013). Three essays on more powerful unit root tests with non-normal errors (Doctoral dissertation, University of Alabama Libraries). Ohara, H.I. (1999). A unit root test with multiple trend breaks: A theory and application to US and Japanese macroeconomic time series, The Japanese Economic Review, 50, 266-290. Perron, P. (1989). The great crash, the oil price shock, and the unit root hypothesis, Econometrica, 57(6), 1361-1401. Perron, P. (1994). Trend, unit root hypothesis and structural change in macroeconomic time series, Roa, B.Bhasakara (Ed.), Cointegration for Applied Economists, St. Martin’s Press. Rodrigues, P. M., & Taylor, A. R. (2012). The Flexible Fourier Form and Local Generalised Least Squares De‐trended Unit Root Tests. Oxford Bulletin of Economics and Statistics, 74(5), 736-759. Saikkonen, P., & Lütkepohl, H. (2002). Testing for a unit root in a time series with a level shift at unknown time. Econometric theory, 18(2), 313-348. Yilanci, V. (2017). Analysing the relationship between oil prices and economic growth: A fourier approach. Ekonometri ve İstatistik e-Dergisi, (27), 51-67. Zivot, E. ve Andrews, D. (1992). Further evidence on the great crash, the oil price shock, and the unit root hypothesis, Journal of Business & Economic Statistics, 10(3), 251-270. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/96797 |