Loi, Andrea and Matta, Stefano (2019): Minimality and uniqueness of equilibrium.
Preview |
PDF
MPRA_paper_98055.pdf Download (293kB) | Preview |
Abstract
In this paper we propose the following conjecture: the equilibrium manifold E(r) ⊂ RLM−1, where L is the number of goods and M the number of consumers, is a minimal submanifold if and only if the price is unique for every economy. We show the validity of this conjecture for an arbitrary number of goods and two consumers and for an arbitrary number of consumers and two goods under the assumption that the normal vector field of E(r) is constant outside a compact subset.
Item Type: | MPRA Paper |
---|---|
Original Title: | Minimality and uniqueness of equilibrium |
Language: | English |
Keywords: | Equilibrium manifold, uniqueness of equilibrium, minimal submanifold. |
Subjects: | D - Microeconomics > D5 - General Equilibrium and Disequilibrium > D50 - General D - Microeconomics > D5 - General Equilibrium and Disequilibrium > D51 - Exchange and Production Economies |
Item ID: | 98055 |
Depositing User: | Stefano Matta |
Date Deposited: | 20 Jan 2020 15:14 |
Last Modified: | 20 Jan 2020 15:14 |
References: | [1] Balasko, Y., 1988, Foundations of the Theory of General Equilibrium, Academic Press, Boston. [2] Anderson, M. T., 1992, The Compactification of a Minimal Submanifold in Euclidean Space by the Gauss Map, available at http://www.math.stonybrook.edu/ anderson/compactif.pdf [3] Carmo, M. do, 1992, Riemannian Geometry, Birkh ̈auser, Boston. [4] DeMichelis,S.andF.Germano,2000,SomeconsequencesoftheunknottednessoftheWalras correspondence, Journal of Mathematical Economics 47 , 537-545. [5] Dillen, F., 1992, Ruled submanifolds of finite type, Proc. of the American Mathematical Society, 114, 3, pp. 795-798. [6] Kehoe, T., 1998, Uniqueness and stability, in A.P. Kirman (ed.) Elements of General Equi- librium Analysis, Basil Blackwell, 38-87. [7] Loi, A. and S. Matta, 2018, Geodesics on the equilibrium manifold, Journal of Mathematical Economics 44, 1379-1384. [8] Loi, A. and S. Matta, 2011, Catastrophes minimization on the equilibrium manifold, Journal of Mathematical Economics 47 , 617-620. [9] Loi, A. and S. Matta, 2018, Curvature and uniqueness of equilibrium, Journal of Mathematical Economics 74 , 62-67. [10] U ̈. Lumiste, 1958, Die n-dimensionalen Minimalfl ̈achen mil einer (n − 1)-dimensionalen asymptotischen Richtung im jedem Punkte, Tartu Riikl. U ̈l. Toimetised 62, 117-141. [11] Mas-Colell, A., 1991, On the uniqueness of equilibrium once again, in W.A. Barnett, B. Cornet, C.d’Aspremont, J. Gabszewics, and A. Mas-Colell (eds.) Equilibrium Theory and Applications, Cambridge University Press. [12] Meek III, W. H. and H. Rosemberg, 2004, The uniqueness of the helicoid, Annals of Math- ematics, 161 (2005), 723–754. [13] Simons, J., 1968, Minimal varieties in Riemannian manifolds, Annals of Mathematics, Sec- ond Series, 88: 62–105. [14] Theil, H., 1967, Economics and Information Theory, North Holland Publishing Company, Amserdam. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/98055 |
Available Versions of this Item
- Minimality and uniqueness of equilibrium. (deposited 20 Jan 2020 15:14) [Currently Displayed]