Aknouche, Abdelhakim and Almohaimeed, Bader and Dimitrakopoulos, Stefanos (2020): Forecasting transaction counts with integer-valued GARCH models.
Preview |
PDF
MPRA_paper_101779.pdf Download (1MB) | Preview |
Abstract
Using numerous transaction data on the number of stock trades, we conduct a forecasting exercise with INGARCH models, governed by various conditional distributions. The model parameters are estimated with efficient Markov Chain Monte Carlo methods, while forecast evaluation is done by calculating point and density forecasts.
Item Type: | MPRA Paper |
---|---|
Original Title: | Forecasting transaction counts with integer-valued GARCH models |
English Title: | Forecasting transaction counts with integer-valued GARCH models |
Language: | English |
Keywords: | Count time series, INGARCH models, MCMC, Forecasting comparison |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C11 - Bayesian Analysis: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C15 - Statistical Simulation Methods: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C18 - Methodological Issues: General C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics |
Item ID: | 101779 |
Depositing User: | Prof. Abdelhakim Aknouche |
Date Deposited: | 15 Jul 2020 09:18 |
Last Modified: | 15 Jul 2020 09:18 |
References: | Ahmad, A., Francq, C. (2016). Poisson QMLE of count time series models. Journal of Time Series Analysis 37: 291-314. Aknouche, A., Bendjeddou, S., Touche, N. (2018). Negative binomial quasi-likelihood inference for general integer-valued time series models. Journal of Time Series Analysis 39:192-211. Aknouche, A., Francq, C. (2020). Count and duration time series with equal conditional stochastic and mean orders. Econometric Theory, 1-33. Atchadé, YF. (2006). An adaptive version for the Metropolis adjusted Langevin algorithm with a truncated drift. Methodology and Computing in Applied Probability 8: 235-254. Cameron, A., Trivedi, P. (2013). Regression Analysis of Count Data. Cambridge University Press. Chen, C.W.S., So, M., Li, J.C., Sriboonchitta, S. (2016). Autoregressive conditional negative binomial model applied to over-dispersed time series of counts. Statistical Methodology 31: 73-90. Christou, V., Fokianos, K. (2014). Quasi-likelihood inference for negative binomial time series models. Journal of Time Series Analysis 35: 55-78. Davis, R.A., Liu, H. (2016). Theory and inference for a class of observation-driven models with application to time series of counts. Statistica Sinica 26: 1673-1707. Doukhan, P., Fokianos K., Tjostheim, D. (2012). On weak dependence conditions for Poisson autoregressions. Statistics and Probability Letters 82: 942-948. Ferland, R., Latour, A., Oraichi, D. (2006). Integer-valued GARCH process. Journal of Time Series Analysis 27: 923-942. Fokianos, K., Rahbek A., Tj stheim, D. (2009). Poisson autoregression. Journal of the American Statistical Association 140: 1430-1439. Geweke, J., Amisano, G. (2011). Hierarchical Markov normal mixture models with applications to financial asset returns. Journal of Applied Econometrics 26:1-29. Grunwald, G., Hyndman, R.J., Tedesco, L., Tweedie, R.L. (2000). Theory and methods: Non-Gaussian conditional linear AR(1) models. Australian & New Zealand Journal of Statistics 42: 479-495. Heinen, A. (2003). Modelling time series count data: an autoregressive conditional Poisson model. Available at SSRN 1117187. Martino, L., Yang, H., Luengo, D., Kanniainen, J., Corande, J. (2015). A fast universal self-tuned sampler within Gibbs sampling. Digital Signal Processing 47: 68-83. Rydberg, T.H., Shephard, N. (2000). BIN models for trade-by-trade data. Modelling the number of trades in a fixed interval of time. Technical Report 0740, Econometric Society. Zhu, F. (2011). A negative binomial integer-valued GARCH model. Journal of Time Series Analysis 32: 54-67. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/101779 |