Dimitrakopoulos, Stefanos and Tsionas, Mike G. and Aknouche, Abdelhakim (2020): Ordinal-response models for irregularly spaced transactions: A forecasting exercise.
Preview |
PDF
MPRA_paper_103250.pdf Download (887kB) | Preview |
Abstract
We propose a new model for transaction data that accounts jointly for the time duration between transactions and for the discreteness of the intraday stock price changes. Duration is assumed to follow a stochastic conditional duration model, while price discreteness is captured by an autoregressive moving average ordinal-response model with stochastic volatility and time-varying parameters. The proposed model also allows for endogeneity of the trade durations as well as for leverage and in-mean effects. In a purely Bayesian framework we conduct a forecasting exercise using multiple high-frequency transaction data sets and show that the proposed model produces better point and density forecasts than competing models.
Item Type: | MPRA Paper |
---|---|
Original Title: | Ordinal-response models for irregularly spaced transactions: A forecasting exercise |
English Title: | Ordinal-response models for irregularly spaced transactions: A forecasting exercise |
Language: | English |
Keywords: | Ordinal-response models, irregularly spaced data, stochastic conditional duration, time varying ARMA-SV model, Bayesian MCMC, model confidence set. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C11 - Bayesian Analysis: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C15 - Statistical Simulation Methods: General C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C41 - Duration Analysis ; Optimal Timing Strategies C - Mathematical and Quantitative Methods > C5 - Econometric Modeling C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C51 - Model Construction and Estimation C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics |
Item ID: | 103250 |
Depositing User: | Prof. Abdelhakim Aknouche |
Date Deposited: | 08 Oct 2020 07:26 |
Last Modified: | 08 Oct 2020 07:26 |
References: | Admati, A.R., & Pfleiderer, P. (1988). A theory of intraday patterns: Volume and price variability. Review of Financial Studies, 1, 3--40. Admati, A.R., & Pfleiderer, P. (1989). Divide and conquer: A theory of intraday and day-of-the-week mean effects. Review of Financial Studies, 2, 189--223. Ait-Sahalia, Y., & Mykland, P.A. (2003). The effects of random and discrete sampling when estimating continuous-time diffusions. Econometrica, 71, 483--549. Andrieu, C., Doucet, A., & Holenstein, R. (2010). Particle Markov chain Monte Carlo methods (with discussion). Journal of the Royal Statistical Society: Series B, (2), 1-33. Ball, C.A. (1988). Estimation bias induced by discrete security prices. Journal of Finance, 43, 841--865. Bauwens, L., & Giot, P. (2000). The logarithmic ACD model: an application to the bid-ask quote process of three NYSE stocks. Annales d'Economie et de Statistique, 60, 117--149. Bauwens, L., Giot, P. (2004). Asymmetric ACD models: Introducing price information in ACD models. Empirical Economics, 28, 709--731. Bauwens, L., & Veredas, D. (2004). The stochastic conditional duration model: A latent variable model for the analysis of financial durations. Journal of Econometrics, 119, 381--412. Diamond, D.W., & Verrecchia, R.E. (1987). Constraints on shortselling and asset price adjustments to private information. Journal of Financial Economics, 18, 277--311. Dimitrakopoulos, S., & Dey, D.K. (2017). Discrete-response state space models with conditional heteroscedasticity: An application to forecasting the federal funds rate target. Economics Letters, 154, 20--23. Dimitrakopoulos, S., & Tsionas, M. (2019). Ordinal-response GARCH models for transaction data: A forecasting exercise. International Journal of Forecasting, 35, 1273--1287. Creal, D.D., & Tsay, R.S. (2015). High dimensional dynamic stochastic copula models. Journal of Econometrics, 2, 335--345. Dravid, A.R. (1991). Effects of bid–ask spreads and price discreteness on stock returns. Working Paper, Wharton School, University of Pennsylvania. Dufour, A., & Engle, R.F. (2000). Time and the price impact of a trade. Journal of Finance, 6, 2467--2498. Easley, D., & O'Hara, M. (1992). Time and the process of security price adjustment, Journal of Finance, 47, 577--605. Engle, R.F. (2000). The econometrics of ultra-high-frequency data. Econometrica, 68, 1--22. Engle, R.F., & Russell, J.R. (1998). Autoregressive conditional duration: A new model for irregularly spaced transaction data. Econometrica, 66, 1127--1162. Engle, R.F., & Sun, Z.(2005). Forecasting volatility using tick by tick data. Working Paper. Department of Finance, New York University. Fernandes, M., & Grammig, J. (2006). A family of autoregressive conditional duration models. Journal of Econometrics, 130, 1--23. Fernandes, M., Medeiros, M.C., & Veiga, A. (2016). A (Semi)Parametric Functional Coefficient Logarithmic Autoregressive Conditional Duration Model. Econometric Reviews, 35, 1221--1250. Fletcher, R.A. (1995). The role of information and the time between trades: An empirical investigation. Journal of Financial Research, 18, 239--260. Geweke, J., & Amisano, G. (2011). Optimal prediction pools. Journal of Econometrics, 164, 130--141. Giacomini, R., & White, H. (2006). Tests of conditional predictive ability. Econometrica, 74, 1545--1578. Girolami, M., & Calderhead, B. (2011). Riemann manifold Langevin and Hamiltonian Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73, 123--214. Gottlieb, G., & Kalay, A. (1985). Implications of the discreteness of observed stock prices. Journal of Finance, 40, 135--153. Grammig, J., & Maurer, K.-O. (2000). Non-monotonic hazard functions and the autoregressive conditional duration model. Econometrics Journal, 3, 16--38. Grammig, J. & Wellner, M. (2002). Modeling the interdependence of volatility and inter-transaction duration processes. Journal of Econometrics, 106, 369--400. Ghysels, E., Gourieroux, C., & Jasiak, J. (2004). Stochastic volatility duration models. Journal of Econometrics, 119, 413--433. Ghysels, E., & Jasiak, J. (1998). GARCH for irregularly spaced financial data: the ACD-GARCH model. Studies in Nonlinear Dynamics and Econometrics, 2, 133--149. Harris, L. (1990). Estimation of stock price variances and serial covariances from discrete observations. Journal of Financial and Quantitative Analysis, 25, 291--306. Hasbrouck, J. (1999). The dynamics of discrete bid and ask quotes. Journal of Finance, 54, 2109--2142. Hansen, P.R., Lunde, A., & Nason, J.M. (2011). The model confidence set. Econometrica, 79, 453--497. Hausman, J.A., Lo, A.W., & MacKinlay, A.C. (1992). An ordered probit analysis of transaction stock prices. Journal of Financial Economics, 31, 319--379. Kim S., Shepherd N., & Chib S. (1998).Stochastic volatility: Likelihood inference and comparison with ARCH Models. Review of Economic Studies, 65, 361--393. Liu, C., & Maheu, J.M. (2012). Intraday dynamics of volatility and duration: Evidence from Chinese stocks. Pacific-Basin Finance Journal, 20, 329--348. Lunde, A. (1999). A generalized gamma autoregressive conditional duration model. Discussion Paper, Aarlborg University. Meddahi, N., Renault, E., & Werker, B. (2006). GARCH and irregularly spaced data. Economics Letters, 90, 200--204. Müller, G.J., & Czado, C. (2009). Stochastic volatility models for ordinal valued time series with application to finance. Statistical Modelling, 9, 69--95. Nash, S.G. (1984). Newton--type minimization via the Lanczos method. SIAM Journal on Numerical Analysis, 21, 770--788. Renault, E., & Werker, B.J.M. (2011). Causality effects in return volatility measures with random times. Journal of Econometrics, 160, 272--279. Rydberg, T.H., & Shephard, N. (2003). Dynamics of trade-by-trade price movements: Decomposition and models. Journal of Financial Econometrics, 1, 2--25. Stroud, J.R., & Johannes M.S. (2014). Bayesian modeling and forecasting of 24-hour high- frequency volatility. Journal of the American Statistical Association,109, 1368--1384. Yang, J.W., & Parwada, J. (2012). Predicting stock price movements: An ordered probit analysis on the Australian securities exchange. Quantitative Finance, 12, 791--804. Zhang, M.Y., Russell, J.R., & Tsay, R.S. (2001). A nonlinear autoregressive conditional duration model with applications to financial transaction data. Journal of Econometrics, 104, 179--207. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/103250 |