Drago, Carlo (2020): The Analysis and the Measurement of Poverty: An Interval Based Composite Indicator Approach.
Preview |
PDF
MPRA_paper_104462.pdf Download (848kB) | Preview |
Abstract
The analysis and measurement of poverty is a crucial issue in the field of social science. Poverty is a multidimensional notion that can be measured using composite indicators relevant to synthesizing statistical indicators. Subjective choices could, however, affect these indicators. We propose interval-based composite indicators to avoid the problem, enabling us in this context to obtain robust and reliable measures. Based on a relevant conceptual model of poverty we have identified, we will consider all the various factors identified. Then, considering a different random configuration of the various factors, we will compute a different composite indicator. We can obtain a different interval for each region based on the distinct factor choices on the different assumptions for constructing the composite indicator. So we will create an interval-based composite indicator based on the results obtained by the Monte-Carlo simulation of all the different assumptions. The different intervals can be compared, and various rankings for poverty can be obtained. For their parameters, such as center, minimum, maximum, and range, the poverty interval composite indicator can be considered and compared. The results demonstrate a relevant and consistent measurement of the indicator and the shadow sector's relevant impact on the final measures.
Item Type: | MPRA Paper |
---|---|
Original Title: | The Analysis and the Measurement of Poverty: An Interval Based Composite Indicator Approach |
Language: | English |
Keywords: | poverty, composite indicators, interval data, symbolic data |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General > C02 - Mathematical Methods C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C43 - Index Numbers and Aggregation I - Health, Education, and Welfare > I3 - Welfare, Well-Being, and Poverty I - Health, Education, and Welfare > I3 - Welfare, Well-Being, and Poverty > I32 - Measurement and Analysis of Poverty |
Item ID: | 104462 |
Depositing User: | Carlo Drago |
Date Deposited: | 05 Dec 2020 13:55 |
Last Modified: | 05 Dec 2020 13:55 |
References: | Abdu, M., & Delamonica, E. (2018). Multidimensional Child Poverty: From Complex Weighting to Simple Representation. Social Indicators Research, 136(3), 881-905. Alkire, S., & Foster, J. (2011). Counting and multidimensional poverty measurement. Journal of public economics, 95(7), 476-487. Alkire, S., Roche, J. M., Ballon, P., Foster, J., Santos, M. E., & Seth, S. (2015). Multidimensional poverty measurement and analysis. Oxford University Press, USA. Anand, S., & Sen, A. (1997). Concepts or Human Development and Poverty: A Multidimensional Perspective. United Nations Development Programme, Poverty and human development: Human development papers, 1-20. Asselin, L. M. (2002). Composite indicator of multidimensional poverty. Multidimensional Poverty Theory. Asselin, Louis-Marie. Analysis of multidimensional poverty: Theory and case studies. Vol. 7. Springer Science & Business Media, 2009. Becker, W., Saisana, M., Paruolo, P., & Vandecasteele, I. (2017). Weights and importance in composite indicators: Closing the gap. Ecological indicators, 80, 12-22. Billard, L. (2008). Some analyses of interval data. Journal of computing and information technology, 16(4), 225-233. Billard, L., & Diday, E. (2003). From the statistics of data to the statistics of knowledge: symbolic data analysis. Journal of the American Statistical Association, 98(462), 470-487. Bourguignon, F., & Chakravarty, S. R. (2003). The measurement of multidimensional poverty. The Journal of Economic Inequality, 1(1), 25-49. Cerioli, A., & Zani, S. (1990). A fuzzy approach to the measurement of poverty. In income and wealth distribution, inequality and poverty (pp. 272-284). Springer, Berlin, Heidelberg. Chambers, R. (2006). What is poverty? Who asks? Who answers?. Poverty in Focus UNDP Poverty Centre (IPC) Costa, M., & De Angelis, L. (2008). The multidimensional measurement of poverty: a fuzzy set approach. Statistica, 68(3/4), 303-319. D'Ambrosio, C. (Ed.). (2018). Handbook of Research on Economic and Social Well-being. Edward Elgar Publishing. De Muro, P., Mazziotta, M., & Pareto, A. (2011). Composite indices of development and poverty: An application to MDGs. Social indicators research, 104(1), 1-18. Drago, C. (2017) Interval Based Composite Indicators. FEEM Working Paper No. 42.2017. Available at SSRN: https://ssrn.com/abstract=3038751 or http://dx.doi.org/10.2139/ssrn.3038751 Drago C. (2018) Il monitoraggio della domanda di reddito di cittadinanza in tempo reale facendo uso di Big Data: un’analisi basata su indicatori ad intervallo. V Convegno Nazionale dell’Associazione Italiana per gli Studi sulla Qualità della Vita - Fiesole (FI), 13-15 Dicembre 2018 - Libro dei Contenuti Brevi Gatto, A., & Drago, C. (2020). Measuring and modeling energy resilience. Ecological Economics, 172, 106527. Gioia, F., & Lauro, C. N. (2005). Basic statistical methods for interval data. Statistica applicata, 17(1), 75-104. Greco, S., Ishizaka, A., Tasiou, M., & Torrisi, G. (2017). On the methodological framework of composite indices: A review of the issues of weighting, aggregation, and robustness. Social Indicators Research, 1-34. Grzegorzewski, P. (2018, September). Measures of Dispersion for Interval Data. In International Conference Series on Soft Methods in Probability and Statistics (pp. 91-98). Springer, Cham. Hansen, K., & Kneale, D. (2013). Does how you measure income make a difference to measuring poverty? Evidence from the UK. Social indicators research, 110(3), 1119-1140. Kakwani, N., & Silber, J. (Eds.). (2008). Quantitative approaches to multidimensional poverty measurement. Springer. Kim, S. G. (2016). What Have We Called as "Poverty"? A Multidimensional and Longitudinal Perspective. Social Indicators Research, 129(1), 229-276. Lemmi, A. A., & Betti, G. (Eds.). (2006). Fuzzy set approach to multidimensional poverty measurement (Vol. 3). Springer Science & Business Media. Lok-Dessallien, R. (1999). Review of poverty concepts and indicators. UNDP Soc Dev Poverty Elimin Div Poverty Reduct Ser from http://www. undp. orgpovertypublicationspovReview pdf, 21. Maggino, F. (2009). La misurazione dei fenomeni sociali attraverso indicatori statistici. Aspetti metodologici. Working paper, Universita` di Firenze. Mauro, V., Biggeri, M., & Maggino, F. (2018). Measuring and monitoring poverty and well-being: A new approach for the synthesis of multidimensionality. Social Indicators Research, 135(1), 75-89. Mballo, C., & Diday, E. (2005). Decision trees on interval valued variables. The electronic journal of symbolic data analysis, 3 (1), 8-18 Moore, R. E. (1979). Methods and applications of interval analysis (Vol. 2). Siam. Mussard, S., & Noel, P. A. M. (2005). Multidimensional decomposition of poverty: a fuzzy set approach (No. 05-08). Nardo, M., Saisana, M., Saltelli, A., & Tarantola, S. (EC/JRC), Hoffman, A., Giovannini, E. (OECD) (2005). Handbook on constructing composite indicators: Methodology and userguide. OECD, statistics working paper Nyiwul, Linus and Selim, Tarek H., Poverty As Social Deprivation: A Survey (February 2006). Review of Social Economy, Volume 64, 2006 - Issue 2, DOI:10.1080/00346760600721122. Available at SSRN: https://ssrn.com/abstract=3166455 Paruolo, P., Saisana, M., & Saltelli, A. (2013). Ratings and rankings: voodoo or science?. Journal of the Royal Statistical Society: Series A (Statistics in Society), 176(3), 609-634. Saisana, M., Saltelli, A., & Tarantola, S. (2005). Uncertainty and sensitivity analysis techniques as tools for the quality assessment of composite indicators. Journal of the Royal Statistical Society: Series A (Statistics in Society), 168(2), 307-323. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., ... & Tarantola, S. (2008). Global sensitivity analysis: the primer. John Wiley & Sons. Saltelli A. (2016) Sensitivity Analysis: an Introduction. Presentation Summer School on Sensitivity Analysis SAMO 2016, Villa Orlandi, Anacapri, July 4-8, 2016 Sen, A. (1982). Poverty and famines: an essay on entitlement and deprivation. Oxford university press. Sen, A. (1992). Inequality reexamined. Clarendon Press Sen, A., & Muellbauer, J. (1988). The standard of living. Cambridge University Press. Sindzingre, A. (2007). The multidimensionality of poverty: An institutionalist perspective. In The many dimensions of poverty (pp. 52-74). Palgrave Macmillan, London. Song, P., Liang, J., & Qian, Y. (2012). A two-grade approach to ranking interval data. Knowledge-Based Systems, 27, 234-244. Sunaga, T. (1958). Theory of interval algebra and its application to numerical analysis. RAAG memoirs, 2(29-46), 209. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/104462 |