Meinhardt, Holger Ingmar (2021): Disentangle the Florentine Families Network by the Pre-Kernel.
Preview |
PDF
MPRA_paper_106482.pdf Download (835kB) | Preview |
Abstract
For different model settings we conduct power analyses on the Florentine families network of the 15th century while referring to the most popular power indices like the Shapley-Shubik or Banzhaf value as well as to the pre-nucleolus and pre-kernel. In order to assess their capacity to identify the main protagonists that correspond with the chronicles, we inspect of how the power distributions are spread around the mean. Distributions that are clustered to close around the mean cannot identify outstanding positions. In this respect, they failed to provide a scenario that corresponds with the annals. As it turns out, the pre-kernel solution – as a solution concept designed for studying bargaining situations – retrieves the most accurate image for the examined network structures. Last but not least, we discovered two new non-homogeneous weighted majority games with a disconnected pre-kernel.
Item Type: | MPRA Paper |
---|---|
Original Title: | Disentangle the Florentine Families Network by the Pre-Kernel |
English Title: | Disentangle the Florentine Families Network by the Pre-Kernel |
Language: | English |
Keywords: | Transferable Utility Game, (Non-)Homogeneous Game, Disconnected Pre-Kernel, Convex Analysis, Fenchel-Moreau Conjugation, Pre-Nucleolus, Shapley-Shubik Index, Banzhaf Value, Deegan-Packel Index, Johnston Index, Public Good Index. |
Subjects: | C - Mathematical and Quantitative Methods > C7 - Game Theory and Bargaining Theory > C71 - Cooperative Games |
Item ID: | 106482 |
Depositing User: | Dr. Holger Ingmar Meinhardt |
Date Deposited: | 08 Mar 2021 07:43 |
Last Modified: | 08 Mar 2021 07:43 |
References: | R. J. Aumann and M. Maschler. Game Theoretic Analysis of a Bankruptcy Problem from the Talmud. Journal of Economic Theory, 36:195–213, 1985. B. Barry. Is it Better to Be Powerful or Lucky?: Part I. Political Studies, 28(2):183–194, 1980a. doi: 10.1111/j. 1467-9248.1980.tb01244.x. URL https://doi.org/10.1111/j.1467-9248.1980.tb01244.x. B. Barry. Is it Better to Be Powerful or Lucky? Part II. Political Studies, 28(3):338–352, 1980b. doi: 10.1111/j. 1467-9248.1980.tb00473.x. URL https://doi.org/10.1111/j.1467-9248.1980.tb00473.x. E. Bozzo, M. Franceschet, and F. Rinaldi. Vulnerability and power on networks. Network Science, 3(2):196–226, 2015. doi: 10.1017/nws.2015.8. Ronald L Breiger and Philippa E Pattison. Cumulated social roles: The duality of persons and their algebras. Social Networks, 8(3):215 – 256, 1986. ISSN 0378-8733. doi: https://doi.org/10.1016/0378-8733(86)90006-7. URL http://www.sciencedirect.com/science/article/pii/0378873386900067. M. Davis and M. Maschler. The Kernel of a Cooperative Game. Naval Research Logistic Quarterly, 12:223–259, 1965. R. de Roover. The Rise and Decline of the Medici Bank 1397-1494. The Norton Library, New York, USA, 1966. J. Deegan and E.W. Packel. A new index of power for simplen-person games. International Journal of Game Theory, 7:113–123, 1978. doi: 10.1007/BF01753239. URL https://doi.org/10.1007/BF01753239. X. Deng and C. H. Papadimitriou. On the complexity of cooperative solution concepts. Mathematics of Operations Research, 19:257–266, 1994. P. Dubey and L. S. Shapley. Mathematical properties of the banzhaf power index. Mathematics of Operations Research, 4(2):99–131, 1979. ISSN 0364765X, 15265471. URL http://www.jstor.org/stable/3689345. D.S. Felsenthal. A well-behaved index of a priori p-power for simple n-person games. Homo Oeconomicus, 33: 367–381, 2016. doi: 10.1007/s41412-016-0031-2. URL https://doi.org/10.1007/s41412-016-0031-2. V. Feltkamp. Alternative axiomatic characterizations of the Shapley and Banzhaf values. International Journal of Game Theory, 24:179–186, 1995. doi: 10.1007/BF01240041. URL https://doi.org/10.1007/BF01240041. A. Fronzetti Colladon and M. Naldi. Distinctiveness centrality in social networks. PLoS ONE, 15(5), 2020. URL https://doi.org/10.1371/journal.pone.0233276. Ch. Hibbert. The Rise and Fall of the House of Medici. Harper Perennial, New York, USA, reprint 2003 edition, 1974. M. J. Holler. Forming Coalitions and Measuring Voting Power. Political Studies, 30:262–271, 1982. M. J. Holler. The Public Good Index: A Brief Introduction. Finnish-German Yearbook of Political Economy, 1: 31–39, 2018. M. J. Holler and E. W. Packel. Power, Luck and the Right Index. Journal of Economics, 43:21–29, 1983. M. J. Holler and F. Rupp. Power in Networks: The Medici. Technical report, CCR-Munich, Munich, Germany, 2020. Forthcoming in HOMO OECONOMICUS. A Kopelowitz. Computation of the Kernels of Simple Games and the Nucleolus of N-Person Games. Technical report, RM 31, Research Program in Game Theory and Mathematical Economics, The Hebrew University of Jerusalem, 1967. mimeo. R. W. Krause and A. Caimo. Missing Data Augmentation for Bayesian Exponential Random Multi-Graph Models. volume 221, pages 63–72. International Workshop on Complex Networks, 2019. URL doi:10.21427/PME8-MT48. S. Lorenzo-Freire, J.M. Alonso-Meijide, B. Casas-Méndez, and M.G. Fiestras-Janeiro. Characterizations of the deegan– packel and johnston power indices. European Journal of Operational Research, 177(1):431 – 444, 2007. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2005.08.025. URL http://www.sciencedirect.com/science/ article/pii/S0377221705009057. J-E. Martinez-Legaz. Dual Representation of Cooperative Games based on Fenchel-Moreau Conjugation. Optimization, 36:291–319, 1996. M. Maschler, B. Peleg, and L.S. Shapley. The Kernel and Bargaining Set for Convex Games. International Journal of Game Theory, 1:73–93, 1972 M. Maschler, B. Peleg, and L. S. Shapley. Geometric Properties of the Kernel, Nucleolus, and Related Solution Concepts. Mathematics of Operations Research, 4:303–338, 1979. H. I. Meinhardt. The Matlab Game Theory Toolbox MatTuGames Version 0.4: An Introduction, Basics, and Examples. Technical report, Karlsruhe Institute of Technology (KIT), 2013a. H. I. Meinhardt. The Pre-Kernel as a Tractable Solution for Cooperative Games: An Exercise in Algorithmic Game Theory, volume 45 of Theory and Decision Library: Series C. Springer Publisher, Heidelberg/Berlin, 2013b. ISBN 978-3-642-39548-2. doi: 10.1007/978-3-642-39549-9. URL https://doi.org/10.1007/978-3-642-39549-9. H. I. Meinhardt. A Note on the Computation of the Pre-Kernel for Permutation Games. Technical Report MPRA- 59365, Karlsruhe Institute of Technology (KIT), May 2014. URL http://mpra.ub.uni-muenchen.de/59365/. H. I. Meinhardt. Finding the nucleoli of large cooperative games: A disproof with counter-example. CoRR, abs/1603.00226, 2016a. URL http://arxiv.org/abs/1603.00226. H. I. Meinhardt. The Incorrect Usage of Propositional Logic in Game Theory: The Case of Disproving Oneself. MPRA, 75876, 2016b. URL https://mpra.ub.uni-muenchen.de/75876/. Revised Version. H. I. Meinhardt. Simplifying the Kohlberg Criterion on the Nucleolus: A Disproof by Oneself. Technical Report MPRA-77143, Karlsruhe Institute of Technology (KIT), March 2017a. URL http://mpra.ub.uni-muenchen. de/77143/. H. I. Meinhardt. Simplifying the Kohlberg Criterion on the Nucleolus: A Correct Approach. ArXiv e-prints, 2017b. URL http://arxiv.org/abs/1706.08076. H. I. Meinhardt. The Pre-Kernel as a Fair Division Rule for Some Cooperative Game Models, pages 235–266. Springer International Publishing, Cham, 2018. ISBN 978-3-319-61603-2. doi: 10.1007/978-3-319-61603-2_11. URL https://doi.org/10.1007/978-3-319-61603-2_11. H. I. Meinhardt. Deduction Theorem: The Problematic Nature of Common Practice in Game Theory. arXiv e-prints, art. arXiv:1908.00409, Jul 2019. URL https://arxiv.org/abs/1908.00409. H. I. Meinhardt. MatTuGames: A Matlab Toolbox for Cooperative Game Theory, 2020a. URL http://www. mathworks.com/matlabcentral/fileexchange/35933-mattugames. H. I. Meinhardt. On the Replication of the Pre-Kernel and Related Solutions. Technical Report MPRA-102676, Karlsruhe Institute of Technology (KIT), August 2020b. URL https://mpra.ub.uni-muenchen.de/102676/1/ MPRA_paper_102676.pdf. Revised Version. A. Meseguer-Artola. Using the Indirect Function to characterize the Kernel of a TU-Game. Technical report, Departament d’Economia i d’Història Econòmica, Universitat Autònoma de Barcelona, Nov. 1997. mimeo. A. Ostmann and H. I. Meinhardt. Non-Binding Agreements and Fairness in Commons Dilemma Games. Central European Journal of Operations Research, 15(1):63–96, 2007. A. Ostmann and H. I. Meinhardt. Toward an Analysis of Cooperation and Fairness That Includes Concepts of Cooperative Game Theory. In A. Biel, D. Eek, T. Garling, and M. Gustafson, editors, New Issues and Paradigms in Research on Social Dilemmas, pages 230–251. Springer-Verlag, 2008. J. Antonio Rivero Ostoic. Compositional equivalence with actor attributes: Positional analysis of the the florentine families network. CoRR, abs/1804.09427, 2018. URL http://arxiv.org/abs/1804.09427. J.F. Padgett and C.K. Ansell. Robust Action and the Rise of the Medici, 1400-1434. American Journal of Sociology, 98:1259–1319, 1993. John F Padgett. Open elite? social mobility, marriage, and family in florence, 1282–1494. Renaissance Quarterly, 63(2):357–411, 2010. ISSN 00344338, 19350236. URL http://www.jstor.org/stable/10.1086/655230. B. Peleg and P. Sudhölter. Introduction to the Theory of Cooperative Games, volume 34 of Theory and Decision Library: Series C. Springer-Verlag, Heidelberg, 2 edition, 2007. B. Peleg, J. Rosenmüller, and P. Sudhölter. The kernel of homogeneous games with steps. In N. Megiddo, editor, Essays in Game Theory in Honor of Michael Maschler, pages 163–192, Heidelberg, 1994. Springer Publisher. B. Peleg. On the kernel of constant-sum simple games with homogeneous weights. Illinois J. Math., 10(1): 39–48, 03 1966. doi: 10.1215/ijm/1256055199. URL https://doi.org/10.1215/ijm/1256055199. H. Peters. Game Theory: A Multi-Leveled Approach. Springer-Verlag, Heidelberg, 1 edition, 2008. D. Schmeidler. The Nucleolus of a Characteristic Function Game. SIAM, Journal of Applied Mathematics, 17: 1163–1170, 1969. D. Schoch. netrankr: Analyzing Partial Rankings in Networks. Technical report, Manchester, UK, 2020a. URL https://cran.r-project.org/web/packages/netrankr/index.html. Version 0.3. D. Schoch. networkdata: Package of Different Network Datasets. Technical report, Manchester, UK, 2020b. URL https://github.com/schochastics/networkdata. Version 0.1. L. S. Shapley and M. Shubik. A method for evaluating the distribution of power in a committee system. American Political Science Review, 48:787–792, 1954. R.E. Stearns. Convergent Transfer Schemes for N-Person Games. Transaction of the American Mathematical Society, 134:449–459, 1968. P. Sudhölter. Star-Shapedness of the Kernel of Homogeneous Games. Mathematical Social Sciences, (32):179–214, 1996. J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, Princeton, 1944. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/106482 |