Dmitry, Ilinskiy and Sergey, Izmalkov and Alexey, Savvateev (2022): Последовательные труэли: равновесие с выживанием сильнейшего.
Preview |
PDF
MPRA_paper_115766.pdf Download (459kB) | Preview |
Abstract
A sequential truel is a generalisation of duel. This type of games is known because of the «survival of the weakest» paradox, where weakest player have the highest probability of survival. We analyse a typical variation of this model, in which players are allowed to shoot in the air. We show that there exists a SPE-equilibrium, where the strongest player, against the paradox statement, has the highest probability of survival.
Item Type: | MPRA Paper |
---|---|
Original Title: | Последовательные труэли: равновесие с выживанием сильнейшего |
English Title: | Sequential Truels: an equilibrium with the survival of the fittest |
Language: | Russian |
Keywords: | truel; SPE; survival of the weakest |
Subjects: | C - Mathematical and Quantitative Methods > C7 - Game Theory and Bargaining Theory > C72 - Noncooperative Games C - Mathematical and Quantitative Methods > C7 - Game Theory and Bargaining Theory > C73 - Stochastic and Dynamic Games ; Evolutionary Games ; Repeated Games |
Item ID: | 115766 |
Depositing User: | Victor Polterovich |
Date Deposited: | 28 Dec 2022 05:24 |
Last Modified: | 04 Jan 2023 12:26 |
References: | Kinnaird, C. Encyclopaedia of puzzles and pastimes. Citadel, Secaucus, NJ (1946). Гарднер М. Математические головоломки и развлечения. М. Мир, 1971г 512 с. Ф. Морестеллер Пятьдесят занимательных вероятностных задач с решениями. М. Физматлит, 1975. Акулич И.Ф. Тройное дно тройной дуэли. глава из книги Библиотечка «Квант». Выпуск 105. Королевские прогулки. Москва: Бюро Квантум, 2008. - Серия «Библиотечка «Квант». Приложение к журналу «Квант» No01/2008 Shubik, M. Does the fittest necessarily survive? Readings in Game Theory and Political Behaviour, Doubleday, Garden, 43–46 (1954). Shubik, M. Game theory and the study of social behavior: An introductory exposition. Game Theory and Related Approaches to Social Behaviour, John Wiley & Sons, New York, NY (1964). Shubik, M. Game theory in the social sciences: concepts and solutions. MIT Press, Cambridge, MA, 1982. Kilgour, D. M. The sequential truel. Int. J. Game Theory 4, 151–174 Kilgour, D. M. Equilibrium points of infinite sequential truels. Int. J. Game) (1978). Cole, S., Phillips, J., Hartman, A. Test of a model of decision processes in an intense conflict situation. Behavioral Science 22, 186–196 (1977). Dubovik, A. Parakhonyak, A. Selective competition Econstor, http://hdl.handle.net/10419/86731 (2009). Amengual, P., Toral, R. Truels, or survival of the weakest. Computing in Science and Engineering 8(5), 88–95, https://doi. org/10.1109/MCSE.2006.99 (2006). Archetti, M. Survival of the weakest in N-person duels and the maintenance of variation under constant selection. Evolution 66(3), 2012 637–650, https://doi.org/10.1111/j.1558-5646.2011.01477.x . 13 N. L. Kontorovsky, J. P. Pinasco, and F. Vazquez Random multi-player games Chaos: An Interdisciplinary Journal of Nonlinear Science, 32, 2022; https://doi.org/10.1063/5.00801372022 Michael Wegener, Evla Mutlu The good, the bad, the well-connected International Journal of Game Theory (2021) 50:759–771 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/115766 |