Bolivar, Osmar (2023): Evolución de la pobreza en las comunidades de Bolivia entre 2012 y 2022: Un enfoque de machine learning y teledetección.
Preview |
PDF
MPRA_paper_118932.pdf Download (21MB) | Preview |
Abstract
Esta investigación tiene como objetivo pronosticar la incidencia de pobreza a nivel comunitario en Bolivia para el año 2022 empleando algoritmos de machine learning y teledetección, y contrastar estos pronósticos con los datos de 2012. Se procesaron datos censales de 2012 para crear un indicador de pobreza basado en Necesidades Básicas Insatisfechas (NBI) a nivel de comunidades y se seleccionaron 953 de estas comunidades como unidades de análisis. La generación de variables geoespaciales, el entrenamiento y validación de algoritmos de machine learning, y la posterior aplicación de estos modelos revelaron una disminución general de la pobreza, con aproximadamente el 50% de las comunidades proyectadas por debajo del umbral del 42,5% en 2022, indicando mejoras significativas desde 2012. Se observó una reducción diferencial de la pobreza, con un impacto más pronunciado en las comunidades con menores niveles de pobreza iniciales. Se vislumbraron disparidades regionales, con tasas de pobreza más bajas en áreas urbanas, subrayando la necesidad de abordar las desigualdades regionales. Además, se evidencio la eficacia de la metodología planteada en este estudio en comparación con investigaciones similares, resaltando la utilidad de esta metodología para predecir la pobreza a nivel comunitario.
Item Type: | MPRA Paper |
---|---|
Original Title: | Evolución de la pobreza en las comunidades de Bolivia entre 2012 y 2022: Un enfoque de machine learning y teledetección |
English Title: | Evolution of poverty in Bolivian communities between 2012 and 2022: A machine learning and remote sensing approach |
Language: | Spanish |
Keywords: | pobreza; machine learning; remote sensing |
Subjects: | C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs I - Health, Education, and Welfare > I3 - Welfare, Well-Being, and Poverty I - Health, Education, and Welfare > I3 - Welfare, Well-Being, and Poverty > I32 - Measurement and Analysis of Poverty O - Economic Development, Innovation, Technological Change, and Growth > O3 - Innovation ; Research and Development ; Technological Change ; Intellectual Property Rights > O31 - Innovation and Invention: Processes and Incentives |
Item ID: | 118932 |
Depositing User: | Osmar Bolivar Rosales |
Date Deposited: | 21 Oct 2023 09:40 |
Last Modified: | 21 Oct 2023 09:40 |
References: | Alkire, S. y Foster, J. (2011a). Counting and multidimensional poverty measurement. Journal of public economics, 95(7-8):476–487. Alkire, S. y Foster, J. (2011b). Understandings and misunderstandings of multidimensional poverty measurement. The Journal of Economic Inequality, 9:289–314. Atkinson, A. B. (1987). On the measurement of poverty. Econometrica: Journal of the Econometric Society, pages 749–764. Banerjee, A., Duflo, E., y Qian, N. (2020). On the road: Access to transportation infrastructure and economic growth in China. Journal of Development Economics, 145:102442. Battiston, D., Cruces, G., Lopez-Calva, L. F., Lugo, M. A., y Santos, M. E. (2013). Income and beyond: Multidimensional poverty in six Latin American countries. Social indicators research, 112:291–314. Blumenstock, Cadamuro, G., y On, R. (2015). Predicting poverty and wealth from mobile phone metadata. Science, 350(6264):1073–1076. Blumenstock, J. E. (2016). Fighting poverty with data. Science, 353(6301):753–754. Bolivar, O. (2020). Evaluación de impacto de la infraestructura vial en el crecimiento económico: Una aproximación con base en información satelital de luminosidad para Bolivia. In Bolivar, O., editor, Evaluación de impacto de la infraestructura vial en Bolivia, pages 11–70. CAF-UDAPE, La Paz, Bolivia. Bolivar, O. (2022). Roads illuminate development: Using nightlight luminosity to assess the impact of transport infrastructure. Development Bank of Latin America and the Caribbean, Working Paper 2022/10. Bolivar, O. y Ugarte, D. (2020). Evaluación de impacto de la infraestructura vial sobre las condiciones socioeconómicas de la población. In Bolivar, O., editor, Evaluación de impacto de la infraestructura vial en Bolivia, pages 71–117. CAF-UDAPE, La Paz, Bolivia. Bourguignon, F. y Chakravarty, S. R. (1999). A family of multidimensional poverty measures. In Advances in econometrics, income distribution and scientific methodology: Essays in honor of Camilo Dagum, pages 331–344. Springer. Bourguignon, F. y Chakravarty, S. R. (2003). The measurement of multidimensional poverty. The Journal of Economic Inequality, 1:25–49. Breiman, L. (1996). Bagging predictors. Machine learning, 24:123–140. Burke, M., Hsiang, S. M., y Miguel, E. (2015). Global non-linear effect of temperature on economic production. Nature, 527(7577):235–239. Cevik, S. y Jalles, J. T. (2023a). Eye of the storm: The impact of climate shocks on inflation and growth. International Monetary Fund. Cevik, S. y Jalles, J. T. (2023b). For whom the bell tolls: Climate change and income inequality. Energy Policy, 174:113475. Chen, X. y Nordhaus, W. D. (2011). Using luminosity data as a proxy for economic statistics. Proceedings of the National Academy of Sciences, 108(21):8589–8594. Chi, G., Fang, H., Chatterjee, S., y Blumenstock, J. E. (2022). Microestimates of wealth for all low-and middle-income countries. Proceedings of the National Academy of Sciences, 119(3): e2113658119. Dell, M., Jones, B. F., y Olken, B. A. (2012). Temperature shocks and economic growth: Evidence from the last half century. American Economic Journal: Macroeconomics, 4(3):66–95. Deutsch, J. y Silber, J. (2005). Measuring multidimensional poverty: An empirical comparison of various approaches. Review of Income and wealth, 51(1):145–174. Diao, X., Hazell, P., y Thurlow, J. (2010). The role of agriculture in African development. World development, 38(10):1375–1383. Dietterich, T. G. (2000). Ensemble methods in machine learning. In International workshop on multiple classifier systems, pages 1–15. Springer. Dinkelman, T. (2011). The effects of rural electrification on employment: New evidence from south Africa. American Economic Review, 101(7): 3078–3108. Duclos, J.-Y., Sahn, D. E., y Younger, S. D. (2006). Robust multidimensional poverty comparisons. The economic journal, 116(514):943–968. Duro, D. C., Franklin, S. E., y Dubé, M. G. (2012). A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using spot-5 hrg imagery. Remote sensing of environment, 118:259–272. Engstrom, R., Hersh, J. S., y Newhouse, D. L. (2017). Poverty from space: using highresolution satellite imagery for estimating economic well-being. World Bank Policy Research Working Paper, (8284). Feldmeyer, D., Meisch, C., Sauter, H., y Birkmann, J. (2020). Using openstreetmap data and machine learning to generate socio-economic indicators. ISPRS International Journal of Geo-Information, 9(9):498. Foster, A. y Rosenzweig, M. (2010). Microeconomics of technology adoption. Annu. Rev. Econ., 2(1):395–424. Foster, J., Greer, J., y Thorbecke, E. (1984). A class of decomposable poverty measures. Econometrica: journal of the econometric society, pages 761–766. Galbraith, J. K. (1998). The affluent society. Houghton Mifflin Harcourt. Gallup, J. L., Sachs, J. D., y Mellinger, A. D. (1999). Geography and economic development. International regional science review, 22(2):179–232. Ghosh, T., L Powell, R., D Elvidge, C., E Baugh, K., C Sutton, P., y Anderson, S. (2010). Shedding light on the global distribution of economic activity. The Open Geography Journal, 3(1). Henderson, J. V., Storeygard, A., y Weil, D. N. (2012). Measuring economic growth from outer space. American economic review, 102(2):994–1028. Hersh, J., Martin Rivero, L., Engstrom, R., Mann, M., y Mejía, A. (2020). Mapping income poverty in Belize using satellite features and machine learning. Inter-American Development Bank-Felipe Herrera Library2020. INE (2015). Metodología de las necesidades básicas insatisfechas. Instituto Nacional de Estadística. Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., y Ermon, S. (2016). Combining satellite imagery and machine learning to predict poverty. Science, 353(6301):790– 794. Jenkins, S. P. y Lambert, P. J. (1997). Three ‘i’s of poverty curves, with an analysis of UK poverty trends. Oxford economic papers, 49(3):317–327. Kanbur, R. (1990). Poverty and development: The human development report and the world development report, 1990, volume 103. World Bank Publications. Lambert, D. K. (2014). Historical impacts of precipitation and temperature on farm production in Kansas. Journal of Agricultural and Applied Economics, 46(4):439– 456. Liu, Y., Zuo, R., y Dong, Y. (2021). Analysis of temporal and spatial characteristics of urban expansion in xiaonan district from 1990 to 2020 using time series landsat imagery. Remote Sensing, 13(21):4299. Mantovani, R. G., Horváth, T., Cerri, R., Junior, S. B., Vanschoren, J., y de Carvalho, A. C. P. d. L. F. (2018). An empirical study on hyperparameter tuning of decision trees. arXiv preprint arXiv:1812.02207. Martinez Jr, A. M. (2020). Mapping poverty through data integration and artificial intelligence. UNESCAP: United Nations Economic and Social Commission for Asia and the Pacific. Melchiorri, M., Florczyk, A. J., Freire, S., Schiavina, M., Pesaresi, M., y Kemper, T. (2018). Unveiling 25 years of planetary urbanization with remote sensing: Perspectives from the global human settlement layer. Remote Sensing, 10(5):768. Min, P. P., Gan, Y. W., Hamzah, S. N. B., Ong, T. S., y Sayeed, M. S. (2022). Poverty prediction using machine learning approach. Journal of Southwest Jiaotong University, 57(1). Mueller, V. A. y Osgood, D. E. (2009). Long-term consequences of short-term precipitation shocks: evidence from Brazilian migrant households. Agricultural Economics, 40(5):573–586. Nordhaus, W. D. (2006). Geography and macroeconomics: New data and new findings. Proceedings of the National Academy of Sciences, 103(10):3510–3517. Orshansky, M. (1969). How poverty is measured. Monthly Lab. Rev., 92:37. Piaggesi, S., Gauvin, L., Tizzoni, M., Cattuto, C., Adler, N., Verhulst, S., Young, A., Price, R., Ferres, L., y Panisson, A. (2019). Predicting city poverty using satellite imagery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages 90–96. Ravallion, M. (2011). On multidimensional indices of poverty. The Journal of Economic Inequality, 9:235–248. Steele, J. E., Sundsøy, P. R., Pezzulo, C., Alegana, V. A., Bird, T. J., Blumenstock, J., Bjelland, J., Engø-Monsen, K., De Montjoye, Y.-A., Iqbal, A. M., et al. (2017). Mapping poverty using mobile phone and satellite data. Journal of The Royal Society Interface, 14(127):20160690. Tang, B., Sun, Y., Liu, Y., y Matteson, D. S. (2018). Dynamic poverty prediction with vegetation index. 32nd Conference on Neural Information Processing Systems (NIPS 2018). Thon, D. (1979). On measuring poverty. Review of Income and Wealth, 25(4):429–439. Tingzon, I., Orden, A., Go, K., Sy, S., Sekara, V., Weber, I., Fatehkia, M., Garc´ıa-Herranz, M., y Kim, D. (2019). Mapping poverty in the Philippines using machine learning, satellite imagery, and crowd-sourced geospatial information. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42:425–431. Tsui, K.-y. (2002). Multidimensional poverty indices. Social choice and welfare, 19:69–93. Ugarte, D. y Bolivar, O. (2018). Descentralización en Bolivia: Eficacia y externalidades. Instituto de Estudios Avanzados en Desarrollo (INESAD). Wolpert, D. H. (1992). Stacked generalization. Neural networks, 5(2):241–259. Yeh, C., Perez, A., Driscoll, A., Azzari, G., Tang, Z., Lobell, D., Ermon, S., y Burke, M. (2020). Using publicly available satellite imagery and deep learning to understand economic well-being in Africa. Nature communications, 11(1):2583. Zhongming, Z.and Linong, L., Xiaona, Y., Wangqiang, Z., y Wei, L. (2021). Mapping the spatial distribution of poverty using satellite imagery in Thailand. Asian Development Bank. Zhou, M., Lu, L., Guo, H., Weng, Q., Cao, S., Zhang, S., y Li, Q. (2021). Urban sprawl and changes in land-use efficiency in the beijing–Tianjin–hebei region, China from 2000 to 2020: A spatiotemporal analysis using earth observation data. Remote Sensing, 13(15):2850. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/118932 |