NEIFAR, MALIKA and HDIDER, ANIS (2024): Role of Crude Oil, Natural Gas and Wheat Prices and the Impact of the Russian-Ukrainian War on the Investor Social Network Sentiment; Evidence from the US Stock Market. Published in:
Preview |
PDF
MPRA_paper_120920.pdf Download (1MB) | Preview |
Abstract
Through an empirical analysis of the impact of fluctuations in the international prices of crude oil, natural gas and wheat on the US stock market performance, the study seeks to show evidence of the investor social network sentiment effects post the Ukraine war declaration on February 24, 2022. A comparative approach was used for Ukraine's pre- vs post-war declaration period. The considered models are of the GARCH-X type. Founding show that only post-war declaration; investor sentiment as well as the economic factors such as the prices of raw materials (including crude oil and natural gas) and food (wheat) have caused the volatility of the S&P 500 index return, while market volatility (VIX) affect negatively the stock market return pre- and post-war declaration.
Item Type: | MPRA Paper |
---|---|
Original Title: | Role of Crude Oil, Natural Gas and Wheat Prices and the Impact of the Russian-Ukrainian War on the Investor Social Network Sentiment; Evidence from the US Stock Market |
English Title: | Role of Crude Oil, Natural Gas and Wheat Prices and the Impact of the Russian-Ukrainian War on the Investor Social Network Sentiment; Evidence from the US Stock Market |
Language: | English |
Keywords: | S&P500 stock index; American market volatility (the VIX index); American investor sentiment on tweeter, Ukraine War; commodity prices (crude oil, natural gas and wheat); GARCH-X model. |
Subjects: | E - Macroeconomics and Monetary Economics > E4 - Money and Interest Rates > E44 - Financial Markets and the Macroeconomy G - Financial Economics > G1 - General Financial Markets > G11 - Portfolio Choice ; Investment Decisions G - Financial Economics > G1 - General Financial Markets > G15 - International Financial Markets |
Item ID: | 120920 |
Depositing User: | Pr Malika NEIFAR |
Date Deposited: | 21 May 2024 07:15 |
Last Modified: | 21 May 2024 07:15 |
References: | A. Christakis, N., & H. Fowler, J. (2009). Connected: The Surprising Power of our Social Networks and How they Shape our Lives. Journal of Cognition and Culture, 353 pages. doi:DOI:10.1163/156853710X531267 A. Samuelson, P. (1947). Foundations of Economic Analysis. Havard: Harvard University Press. Akerlof, G. A., & Shiller, R. J. (2015). Phishing for Phools: The Economics of Manipulation and Deception. United States: Princeton University Press. doi:https://doi.org/10.2307/j.ctvc777w8 Andersen, T. G., Bollerslev, T., Diebold, F. X., & Labys, P. (2003). Modeling and forecasting realized volatility. Econometrica, 71(2), 579–625. Aral, S., & Dylan, W. (2012). Identifying Influential and Susceptible Members of Social Networks. Science AAAS, 1-32. doi:DOI: 10.1126/science.1215842 Aral, S., Muchnik, L., & Taylor, S. J. (2013). Social Influence Bias: A Randomized Experiment. Science AAAS, 1-6. doi:DOI: 10.1126/science.1240466 Arnd, C., Diao, X., Dorosh, P., Paw, K., & Thurlow, J. (2023, March). The Ukraine war and rising commodity prices: Implications for developing countries. Global Food Security, 1-9. doi:https://doi.org/10.1016/j.gfs.2023.100680 Audrino, F., Sigrist, F., & Ballinari, D. (2019). The impact of sentiment and attention measures on stock market volatility. International Journal of Forecasting, 1-24. doi:https://doi.org/10.1016/j.ijforecast.2019.05.010 Bapat, S. R., Kothari, S., & Bansal, R. (2022, October). Sentiment Analysis of ESG disclosures on Stock Market. arXiv:2210.00731v1 [q-fin.CP], 1-9. Baruník, J., & Křehlík, T. (2018). Measuring the frequency dynamics of financial connectedness and systemic risk. J. Financial Econom. 16 (2), 271–296. Bekaert, G., & R. Harvey, C. (2000). Foreign Speculators and Emerging Equity Markets. The Journal of Finance , Vol. 55, No. 2, 565-613. Berkman, H., Jacobsen, B., & Lee, J. B. (2011). Time-varying rare disaster risk and stock returns. Journal of Financial Economics, 101(2), 313–332. Black, F., Scholes, M., & Merton, R. c. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy, Vol. 81, No. 3, 637-654 (18 pages). Bollen, J., Mao, H., & Pepe, A. (2009). Modeling Public Mood and Emotion: Twitter Sentiment and Socio-Economic Phenomena. (pp. 1-10). Bloomington-Los Angelos: Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media (ICWSM 2011), 17-21 July 2011, Barcelona, Spain. doi:https://doi.org/10.1609/icwsm.v5i1.14171 Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, Volume 2( Issue), 1-8. doi:https://doi.org/10.1016/j.jocs.2010.12.007 Boungou, W., & Yatié, A. (2022, April). The impact of the Ukraine–Russia war on world stock market returns. Economics Letters, 1-3. doi:https://doi.org/10.1016/j.econlet.2022.110516 Brown, W. O., & Burdekin, R. C. (2002). German debt traded in London during the second world war: A British perspective on Hitler. Economica, 69(276), 655–669. Cabarcos, L. M., Ada, M. P.-P., & López-Pérez, M. L. (2019). Does Social Network Sentiment Influence S&P 500 Environmental & Socially Responsible Index? Sustainability, 11(320). doi:10.3390/su11020320 Caldara, D., & Iacoviello, M. (2022). Measuring geopolitical risk. Am. Econ. Rev., 112 (4), 1194–1225. Cortes, G., Vossmeyer, A., & Weidenmier, M. (2022). Stock Volatility and the War Puzzle. National Bureau of Economic Research: NBER Working Paper (No. 29837). Diebold, F., & Yılmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. J. Econom. 182 (1). Ding, Z., Engle, R., & Granger, C. (1993). Long Memory Properties of Stock Market Returns and a New Model. Journal of Empirical Finance, 1, 83-106. Engle, R. F., Lilien, D. M., & Robins, R. P. (1987). Estimating Time Varying Risk Premia in the Term Structure: The ARCH-M Model. Econometrica, 55(2), 391-407. Engle, R., & Ng, V. (1993). Measuring and Testing the Impact of News on Volatility. Journal of Finance, 48, 1749–1778. Fama, E., Fisher, L., Jensen, M., & Roll, R. (1969). The adjustment of stock prices to new information. Int. Econ. Rev. 10 (1), 1–21. Frey, B. S., & Kucher, M. (2000). World war II as reflected on capital markets. Economics Letters, 69(2), 187–191. Frey, B. S., & Kucher, M. (2001). Wars and markets: How bond values reflect the second world war. Economica, 68 (271), 317–333. Frey, B. S., & Waldenström, D. (2004). Markets work in war: World war II reflected in the Zurich and Stockholm bond markets. Financial History Review, 11(1), 51–67. Garcia, D., & Schweitzer, F. (2015). Social signals and algorithmic trading of Bitcoin. Royal Society Open Science, 1-19. Hodorog, A., Petri, I., & Rezgui, Y. (2022, july). Machine learning and Natural Language Processing of social media data for event detection in smart cities. Sustainable Cities and Society, 1-20. doi:https://doi.org/10.1016/j.scs.2022.104026 Hong, H., & Stein, J. C. (1999). A Unified Theory of Underreaction, Momentum Trading, and Overreaction in Asset. The Journal of Finance , 1-43. Hudson, R., & Urquhart, A. (2015). War and stock markets: The effect of world war two on the British stock market. International Review of Financial Analysis, 40, 166–177. Izzeldin, M., Muradoglu, Y. G., Pappas, V., Petropoulou, A., & Sivaprasad, S. (2023, February). The impact of the Russian-Ukrainian war on global financial markets. International Review of Financial Analysis, 1-13. doi:https://doi.org/10.1016/j.irfa.2023.102598 J. Shiller, R. (2000). The American Journal of Economics and Sociology (Vol. Vol. 59, No. 3). Princeton: The American Journal of Economics and Sociology. Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica , Vol. 47, No. 2, 263-292 (29 pages). doi:https://doi.org/10.2307/1914185 Kamal, M.-R., Ahmed, S., & Hasan, M. M. (2023, April). The impact of the Russia-Ukraine crisis on the stock market. Pacific-Basin Finance Journal, 1-27. doi:https://doi.org/10.1016/j.pacfin.2023.102036 Kevin, H., D. G., & Eziz, D. (2021). Twitter Sentiment Analysis for Predicting Stock Price Movements. Stanford University, Department of Computer Science, USA. doi:CS230: Deep Learning, Winter 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.) Liadze, I., Macchiarelli, C., Mortimer-Lee, P., & Juanino, P. (2022). The economic costs of the Russia-Ukraine conflict. NIESR Policy Pap(32). Liao, S. (2023, February). The Russia-Ukraine Outbreak and the Value of Renewable Energy. Economics Letters, 1-20. doi:DOI: https://doi.org/10.1016/j.econlet.2023.111045 Liu, Q., Wang, X., & Du, Y. (2022, December). The weekly cycle of investor sentiment and the holiday effect- An empirical study of Chinese stock market based on natural language processing. Heliyon, 1-14. doi:https://doi.org/10.1016/j.heliyon.2022.e12646 M. Barber, B., & Odeon, T. (2001). BOYS WILL BE BOYS: GENDER, OVERCONFIDENCE, AND COMMON STOCK INVESTMENT. QUARTERLY JOURNAL OF ECONOMICS, 1-32. Moat, H., Curne, C., Avakian, A., Kenett, D., Stanley, E., & Preis, T. (2013). Quantifying Wikipedia usage patterns before stock market moves. Sci. Rep, 3 (1801). Neifar, M. (2020, March 17). Stock Market Volatility Analysis: A Case. Munich, Germany. Récupéré sur https://mpra.ub.uni-muenchen.de/99140/ Neifar, M., Charfeddine, S., & Kammoun, A. (2022). Financial Performance of Islamic Versus Conventional Banks a Comparative Analysis for Jordan. International Journal of Economics and Financial Issues, 12(6), 65-74. doi:DOI: https://doi.org/10.32479/ij Nguyen, D. Q., Vu, T., & Nguyen, A. T. (2020, November). BERTweet: A pre-trained language model for English Tweets. Association for Computational Linguistics, 1-6. doi:Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 9–14 Nyakurukwa, K., & Seetharam, Y. (2023, February ). The evolution of studies on social media sentiment in the stock market: Insights from bibliometric analysis. Scientific African, 1-11. doi:https://doi.org/10.1016/j.sciaf.2023.e01596 Oh, C., & Sheng, O. (December, 2011). Investigating predictive power of stock micro blog sentiment in forecasting future stock price directional movement. In Proceedings of the ICIS, Association for Information Systems, (pp. 1-19). Shanghai, China. Paes Herrera, G., Constantino, M., Su, J.-J., & Naranpanawa, A. (2022, September). Renewable energy stocks forecast using Twitter investor sentiment and deep learning. Energy Economics, 1-11. doi:https://doi.org/10.1016/j.eneco.2022.106285 Piñeiro-Chousa, J., López-Cabarcos, M., Pérez-Pico, A., & Ribeiro-Navarrete, B. (2018). Does social network sentiment influence the relationship between the S&P 500 and gold returns? Int. Rev. Financ. Anal., 57, 57-64. Poterba, J. M., & Summers, L. H. (1984, September ). THE PERSISTENCE OF VOLATILITY AND STOCK MARKET FLUCTUATIONS. National Bureau of Economic Research , pp. 1-34. doi:DOI 10.3386/w1462 Preoţiuc-Pietro, D., Volkova, S., Lampos, V., Bachrach, Y., & Aletras, N. (2015). Studying User Income through Language, Behaviour and Affect in Social Media. PLOS ONE. doi:DOI: 10.1371/journal.pone.0138717 Qing, L., Woon-Seek, L., Minghao, H., & Qingjun, W. (2022, September). Synergy between stock prices and investor sentiment in social media. Borsa Istanbul Review, 1-17. doi:https://doi.org/10.1016/j.bir.2022.09.006 R.H. Thaler, C. S. (2008). Nudge: Improving Decisions About Health, Wealth and Happiness. New Haven: Yale University Press. Ranco, G., Aleksovski, D., Caldarelli, G., Grčar, M., & Mozetič, I. (2015, September). The Effects of Twitter Sentiment on Stock Price returns. Plos One, 1-21. doi:PLOS ONE | DOI:10.1371/journal.pone.0138441 Ranjan, J. P., & Majhi, R. (2022, November). Are Twitter sentiments during COVID-19 pandemic a critical determinant to predict stock market movements? A machine learning approach. Scientific African, 1-11. doi:https://doi.org/10.1016/j.sciaf.2022.e01480 Reinhart, C., & Rogoff, K. (2009). This Time Is Different: Eight Centuries of Financial Folly. Maryland-Havard: Princeton University Press. Renault, T. (2019, September). Sentiment analysis and machine learning in fnance: a comparison of methods and models on one million messages. Digital Finance, 1-13. doi:https://doi.org/10.1007/s42521-019-00014-x S. Nye, J. (2002). The Paradox of American Power: Why the World’s Only Superpower Can’t Go It Alone. Oxford: Oxford University Press. Sabherwal, S., Sarkar, S., & Zhang, Y. (2011). Do Internet stock message boards in- fluence trading? Evidence from heavily discussed stocks with no fundamental news. J. Bus. Financ. Account., 38, 1209–1237. Schaeffer, R., Borba, B., Rathmann, R., Szklo, A., & Branco, D. (2012). Dow Jones sustainability index transmission to oil stock market returns: A GARCH approach. Energy, 45, 933–943. Shleifer, A., & W. Vishny, R. (1997). The Limits of Arbitrage. The Journal of Finance, Vol. 52, No. 1 , 35-55 (21 pages). doi:https://doi.org/10.2307/2329555 Sinha, A., Kedas, S., Kumar, R., & Malo, P. (2022, February India-Finland). SEntFiN 1.0: Entity-aware sentiment analysis for financial news. Association for Information Science and Technology, 1-22. doi:DOI: 10.1002/asi.24634 Sprenger, T. O., Tumasjan, A., Sandner, P. G., & Welpe, I. (2014). Tweets and Trades: the Information Content of Stock Microblogs. European Financial Management. doi:DOI:10.1111/j.1468-036X.2013.12007.x Tuckett, D., & J., T. (2011). Emotional Finance: The Role of the Unconscious in Financial Decisions. London: The Research Foundation of CFA Institute. doi:DOI:10.1002/9781118258415.ch6 Umar, Z., Bossman, A., Choi, S.-Y., & Vo, X. V. (2022, October). Are short stocks susceptible to geopolitical shocks? Time-Frequency evidence from the Russian-Ukrainian conflict. Finance Research Letters, 1-9. doi:https://doi.org/10.1016/j.frl.2022.103388 Waldenström, D. &. (2008). Did Nordic countries recognize the gathering storm of world war II? Evidence from the bond markets. Explorations in Economic History, 45(2), 107–126. Wisniewski, T. P. (2016). Is there a link between politics and stock returns? A literature survey. International Review of Financial Analysis, 47, 15–23. WorldBank. (2022b). Developing economies must act now to dampen the shocks from the Ukraine conflict. WorldBank.Org. Retrieved from. Récupéré sur https://blogs.worldbank.org/voices/developing-economies-must-act-now-dampen-shocks-ukraine-conflict? cid=ECR_TT_worldbank_EN_EXT Wu, F.-l., Zhan, X.-d., Zhu, J.-q., & Wang, M.-h. (2023, April). Stock market volatility and Russia–Ukraine conflict. Finance Research Letters, 1-14. doi:https://doi.org/10.1016/j.frl.2023.103919 Xiang, C., Zhang, J., Li, F., Fei, H., & Ji, D. (2022, May). A semantic and syntactic enhanced neural model for financial sentiment analysis. Information Processing and Management, 1-15. doi:https://doi.org/10.1016/j.ipm.2022.102943 Yousaf, I., Patel, R., & Yarovaya, L. (2022). The reaction of G20+ stock markets to the Russia-Ukraine conflict ‘black-swan’ event: evidence from event study approach. SSRN Electronic J. doi: https://doi.org/10.2139/ssrn.4069555 Zeitun, R., Ur Rehman, M., Ahmad, N., & Vinh Vo, X. (2022, November ). The impact of Twitter-based sentiment on US sectoral returns. North American Journal of Economics and Finance, 1-16. doi:https://doi.org/10.1016/j.najef.2022.101847 Zvonarev, A., & Bilyi, A. (2019). A Comparison of Machine Learning Methods of Sentiment Analysis Based on Russian Language Twitter Data. CEUR-WS.org/Vol-2590/short35.pdf, 1-7. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/120920 |