Madsen, Theis and Kountouris, Ioannis and Bramstoft, Rasmus and Koundouri, Phoebe and Keles, Dogan (2024): Pathways for Pan-European Energy System Decarbonization: The Effect of Emission. Policies on Target Alignment. Published in:
Preview |
PDF
MPRA_paper_121998.pdf Download (2MB) | Preview |
Abstract
Decarbonization of the energy system is a major challenge for today’s energy system to combat climate change. This challenge is addressed in the EU through different political strategies and plans such as the European Green Deal, Fit-for-55, and REPowerEU, which set specific emission reduction goals for 2030 and 2050. Different mechanisms are in place to achieve these goals, such as the system-wide ETS and the country-level National Energy and Climate Plans. However, there is a difference in the enforcement level between European countries, despite their connection to the same integrated energy system. Hence, there might be discrepancies between the effectiveness of the EU system-level target and the achievements of national goals and plans. To understand and address these discrepancies, we utilize the open-source, sector-coupled energy system optimization model Balmorel to analyze the impact of different decarbonization methods in a fully interconnected, pan-European energy system. In three scenarios, we consider 1) the use of only a system-level carbon budget in line with Fit-for-55 and the European Green Deal, 2) the application of a carbon budget at the country level, and 3) the use of a carbon tax instead of a budget on all production of electricity, heat, and hydrogen. The novelty of this paper lies in the first comparison of these three decarbonization mechanisms and their impact on alignment with policy targets. We demonstrate that the pan-European energy system can reach decarbonization targets across all scenarios. Still, diving from the system perspective into the country level, challenges appear, causing nations to overshoot their allocated budgets. Country-level emission targets are more effective with little cost increase compared to the only system-level target scenario but also cause cross-border effects of fossil fuel based energy production. The carbon tax scenario is the most effective at decarbonizing but comes at up to 27 % higher costs in intermediary years, requiring more early investments.
Item Type: | MPRA Paper |
---|---|
Original Title: | Pathways for Pan-European Energy System Decarbonization: The Effect of Emission. Policies on Target Alignment |
Language: | English |
Keywords: | Energy policy, Energy Transition Pathway, Decarbonization Strategies, Balmorel, Energy System Modeling |
Subjects: | C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs O - Economic Development, Innovation, Technological Change, and Growth > O2 - Development Planning and Policy |
Item ID: | 121998 |
Depositing User: | Prof. Phoebe Koundouri |
Date Deposited: | 29 Jan 2025 11:49 |
Last Modified: | 29 Jan 2025 11:49 |
References: | [1] K. Calvin, D. Dasgupta, G. Krinner, A. Mukherji, P. W. Thorne, C. Trisos, J. Romero, P. Aldunce, K. Barrett, G. Blanco, W. W. Cheung, S. Connors, F. Denton, A. Diongue-Niang, D. Dodman, M. Garschagen, O. Geden, B. Hayward, C. Jones, F. Jotzo, T. Krug, R. Lasco, Y.-Y. Lee, V. Masson-Delmotte, M. Meinshausen, K. Mintenbeck, A. Mokssit, F. E. Otto, M. Pathak, A. Pirani, E. Poloczanska, H.-O. Pörtner, A. Revi, D. C. Roberts, J. Roy, A. C. Ruane, J. Skea, P. R. Shukla, R. Slade, A. Slangen, Y. Sokona, A. A. Sörensson, M. Tignor, D. van Vuuren, Y.-M. Wei, H. Winkler, P. Zhai, Z. Zommers, J.-C. Hourcade, F. X. Johnson, S. Pachauri, N. P. Simpson, C. Singh, A. Thomas, E. Totin, A. Alegría, K. Armour, B. Bednar-Friedl, K. Blok, G. Cissé, F. Dentener, S. Eriksen, E. Fischer, G. Garner, C. Guivarch, M. Haasnoot, G. Hansen, M. Hauser, E. Hawkins, T. Hermans, R. Kopp, N. Leprince-Ringuet, J. Lewis, D. Ley, C. Ludden, L. Niamir, Z. Nicholls, S. Some, S. Szopa, B. Trewin, K.-I.van der Wijst, G. Winter, M. Witting, A. Birt, M. Ha, IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland., Tech. rep., Intergovernmental Panel on Climate Change (7 2023). doi:10.59327/IPCC/AR6-9789291691647. [2] The European Commission, European Climate Law. URL https://climate.ec.europa.eu/eu-action/european-climate-law_en [3] The European Commission, A European Green Deal. URL https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en [4] The European Commission, Fit for 55 - The EU’s plan for a green transition - Consilium. URL https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/ [5] The European Commission, REPowerEU: Affordable, secure and sustainable energy for Europe. URL https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/repowereu-affordable-secure-and- sustainable-energy-europe_en [6] European Comission, EUR-Lex - 32020D1722 - EN - EUR-Lex (2020). URL https://eur-lex.europa.eu/legal-content/GA/TXT/?uri=CELEX: 32020D1722 [7] European Comission, EUR-Lex - 32020D2126 - EN - EUR-Lex (2020). URL https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv: OJ.L_.2020.426.01.0058.01.ENG [8] The European Comission, ETS 2: buildings, road transport and additional sectors. URL https://climate.ec.europa.eu/eu-action/eu-emissions-trading- system-eu-ets/ets-2-buildings-road-transport-and-additional-sectors_en [9] Legislation.gov.uk, The Greenhouse Gas Emissions Trading Scheme Order 2020. URL https://www.legislation.gov.uk/ukdsi/2020/9780348209761/part/2 [10] Federal Office on the Environment FOEN, Emissions trading scheme for installation operators. URL https://www.bafu.admin.ch/bafu/en/home/topics/climate/info- specialists/reduction-measures/ets/installations.html [11] The European Comission, National Energy and Climate Plans. URL https://energy.ec.europa.eu/topics/energy-strategy/national-energy-and-climate-plans-necps_en [12] The European Commission, EU enlargement. URL https://commission.europa.eu/strategy-and-policy/policies/eu-enlargement_en [13] Energy Community, Energy Community Homepage. URL https://www.energy-community.org/ [14] J. Lotze, D. M. Moser, P. Sittaro, D. N. Sun, G. Savvidis, K. Troitskyi, M. Mogel, N. Kidane, C. John, D. J. Lehner, Energy System 2050 - Towards a decarbonised Europe (2021). URL https://www.energysystem2050.net/ [15] R. Rodrigues, R. Pietzcker, J. Sitarz, A. Merfort, R. Hasse, J. Hoppe, M. Pehl, A. Murtaza Ershad, L. Baumstark, G. Luderer, 2040 greenhouse gas reduction targets and energy transitions in line with the EU Green Deal (2023). [16] European Commission, Joint Research Centre, I. Tsiropoulos, W. Nijs, D. Tarvydas, P. Ruiz, Towards net-zero emissions in the EU energy system by 2050 – Insights from scenarios in line with the 2030 and 2050 ambitions of the European Green Deal, Publications Office, 2020. doi:doi/10.2760/081488. [17] P. Capros, L. Paroussos, P. Fragkos, S. Tsani, B. Boitier, F. Wagner, S. Busch, G. Resch, M. Blesl, J. Bollen, European decarbonisation pathways under alternative technological and policy choices: A multi-model analysis, Energy Strategy Reviews 2 (3-4) (2014) 231–245. doi:10.1016/j.esr.2013.12.007. URL https://linkinghub.elsevier.com/retrieve/pii/S2211467X13001053 [18] K. Hainsch, T. Burandt, K. Loffler, C. Kemfert, P.-Y. Oei, C. v. Hirschhausen, Emission Pathways Towards a Low-Carbon Energy System for Europe: A Model-Based Analysis of Decarbonization Scenarios, The Energy Journal 42 (5) (2021) 41–66. doi:10.5547/01956574.42.5.khai. URL http://journals.sagepub.com/doi/10.5547/01956574.42.5.khai [19] T. T. Pedersen, M. S. Andersen, M. Victoria, G. B. Andresen, Us- ing Modeling All Alternatives to explore 55% decarbonization scenar- ios of the European electricity sector, iScience 26 (5) (2023) 106677. doi:10.1016/J.ISCI.2023.106677. [20] K. Zhu, M. Victoria, T. Brown, G. Andresen, M. Greiner, Impact of CO2 prices on the design of a highly decarbonised coupled electricity and heating system in Europe, Applied Energy 236 (2019) 622–634. doi:10.1016/j.apenergy.2018.12.016. URL https://linkinghub.elsevier.com/retrieve/pii/S030626191831835X [21] E. Papadis, G. Tsatsaronis, Challenges in the decarbonization of the energy sector, Energy 205 (2020) 118025. doi:10.1016/j.energy. 2020.118025. [22] H. Zhang, W. Chen, W. Huang, TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective, Applied Energy 162 (2016) 1505–1514. doi:10.1016/j.apenergy.2015.08.124. [23] C. Peñasco, L. D. Anadón, E. Verdolini, Systematic review of the outcomes and trade-offs of ten types of decarbonization policy instruments, Nature Climate Change 11 (3) (2021) 257–265. doi:10.1038/s41558-020-00971-x. [24] J. Meckling, T. Sterner, G. Wagner, Policy sequencing toward decarbonization, Nature Energy 2017 2:12 2 (12) (2017) 918–922. doi: 10.1038/s41560-017-0025-8. URL https://www.nature.com/articles/s41560-017-0025-8 [25] F. R. Aune, R. Golombek, Are Carbon Prices Redundant in the 2030 EU Climate and Energy Policy Package?, The Energy Journal 42 (3) (2021) 225–264. doi:10.5547/01956574.42.3.faun. [26] F. Wiese, R. Bramstoft, H. Koduvere, A. Pizarro Alonso, O. Balyk, J. G. Kirkerud, A. G. Tveten, T. F. Bolkesjø, M. Münster, H. Ravn, Balmorel open source energy system model, Energy Strategy Reviews 20 (2018) 26–34. doi:https://doi.org/10.1016/j.esr.2018.01.003. URL https://www.sciencedirect.com/science/article/pii/S2211467X18300038 [27] I. Kountouris, R. Bramstoft, T. Madsen, J. Gea-Bermúdez, M. Münster, D. Keles, A unified European hydrogen infrastructure planning to support the rapid scale-up of hydrogen production (2023). doi:https://doi.org/10.21203/rs.3.rs-3185467/v1. [28] J. Gea-Bermúdez, I. G. Jensen, M. Münster, M. Koivisto, J. G. Kirkerud, Y.-k. Chen, H. Ravn, The role of sector coupling in the green transition: A least-cost energy system development in Northern-central Europe towards 2050, Applied Energy 289 (2021) 116685. doi:https://doi.org/10.1016/j.apenergy.2021.116685. URL https://www.sciencedirect.com/science/article/pii/S0306261921002130 [29] M. S. Lester, R. Bramstoft, M. Münster, Analysis on Electrofuels in Future Energy Systems: A 2050 Case Study, Energy 199 (2020) 117408. doi:10.1016/j.energy.2020.117408. [30] R. Bramstoft, A. Pizarro-Alonso, I. G. Jensen, H. Ravn, M. Münster, Modelling of renewable gas and renewable liquid fuels in future integrated energy systems, Applied Energy 268 (2020) 114869. doi: 10.1016/j.apenergy.2020.114869. [31] The European Commission, Non-ETS emissions by sector (2020). URL https://www.consilium.europa.eu/en/infographics/non-ets-emissions-by-sector/ [32] International Energy Agency, World Energy Outlook 2022, Tech. rep., International Energy Agency (2022). [33] European Comission, EUR-Lex - 52022SC0230 - EN - EUR-Lex (2022). URL https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=SWD%3A2022%3A230%3AFIN [34] European Commission, Directorate-General for Climate Action, Directorate-General for Energy, Directorate-General for Mobility and Transport, A. De Vita, P. Capros, L. Paroussos, K. Fragkiadakis, P. Karkatsoulis, L. Höglund-Isaksson, W. Winiwarter, P. Purohit, A. Gómez-Sanabria, P. Rafaj, L. Warnecke, A. Deppermann, M. Gusti, S. Frank, P. Lauri, F. Fulvio, A. Florou, M. Kannavou, N. Forsell, T. Fotiou, P. Siskos, P. Havlík, I. Tsiropoulos, S. Evangelopoulou, P. Witzke, M. Kesting, N. Katoufa, I. Mitsios, G. Asimakopoulou, T. Kalokyris, EU reference scenario 2020 – Energy, transport and GHG emissions – Trends to 2050, Publications Office, 2021. doi:doi/10.2833/35750. [35] Eurostat (2023). URL https://ec.europa.eu/eurostat/en/ [36] Virta, EV Charging - How much electricity does an electric car use? (2023). URL https://www.virta.global/blog/ev-charging-101-how-much-electricity-does-an-electric-car-use [37] Odyssee-Mure, Sectoral profile - Transport (2021). URL https://www.odyssee-mure.eu/publications/efficiency-by- sector/transport/distance-travelled-by-car.html [38] E. Commission, D.-G. for Energy, L. Kranzl, M. Fallahnejad, R. Büchele, A. Müller, M. Hummel, T. Fleiter, T. Mandel, M. Bagheri, G. Deac, C. Bernath, J. Miosga, C. Kiefer, J. Fragoso, S. Braungardt, V. Bürger, D. Spasova, J. Viegand, R. Naeraa, S. Forthuber, Renewable space heating under the revised Renewable Energy Directive – ENER/C1/2018-494 – Final report, Publications Office of the European Union, 2022. doi: doi/10.2833/525486. URL https://www.isi.fraunhofer.de/en/competence-center/ energietechnologien-energiesysteme/projekte/Renewable_space_heating_under_the_revised_Renewable_Energy_Directive.html#4 [39] M. Rehfeldt, T. Fleiter, F. Toro, A bottom-up estimation of the heating and cooling demand in European industry, Energy Efficiency 11 (5) (2018) 1057–1082. doi:10.1007/S12053-017-9571-Y/FIGURES/19. URL https://link.springer.com/article/10.1007/s12053-017-9571-y [40] A. Wang, J. Jens, D. Mavins, M. Moultak, M. Schimmel, K. Van Der Leun, D. Peters, M. Buseman, Analysing future demand, supply, and transport of hydrogen EUROPEAN HYDROGEN BACKBONE Executive summary, Tech. rep. (2021). URL https://transparency.entsog.eu/ [41] European Construction Cost Index, Cost Index (2023). URL https://constructioncosts.eu/cost-index/ [42] sEEnergies Open Data, UA heat demands (2022). URL https://s-eenergies-open-data-euf.hub.arcgis.com/datasets/80c1c15e1103479dac41281644d999d9_0/explore |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/121998 |