Leogrande, Angelo (2024): Unlocking Hidden Value: A Framework for Transforming Dark Data in Organizational Decision-Making.
PDF
MPRA_paper_122776.pdf Download (5MB) |
Abstract
In today’s data-driven world, organizations generate and collect vast amounts of information, yet not all data is managed or utilized with the same degree of efficiency and purpose. This paper investigates the taxonomy and distinctions among white data, grey data, and dark data, offering a comprehensive analytical framework to better understand their characteristics, value, and implications. White data refers to structured, accessible, and actively managed information that supports strategic decision-making and operational processes. In contrast, grey data occupies an intermediate space, representing semi-structured or unstructured data that, while not fully optimized, holds potential value when properly integrated into organizational practices. Lastly, dark data comprises the large quantities of information that remain unexploited, often due to a lack of resources, awareness, or technology. By mapping these categories, this paper aims to highlight the importance of a systematic approach in managing diverse data types, underscoring both the risks and opportunities associated with each. The study ultimately provides practical insights and recommendations for organizations seeking to maximize the value of their data assets through effective taxonomy and governance strategies.
Item Type: | MPRA Paper |
---|---|
Original Title: | Unlocking Hidden Value: A Framework for Transforming Dark Data in Organizational Decision-Making |
English Title: | Unlocking Hidden Value: A Framework for Transforming Dark Data in Organizational Decision-Making |
Language: | English |
Keywords: | Dark Data, White Data, Grey Data, Warehouse Management. |
Subjects: | C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs > C80 - General C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs > C81 - Methodology for Collecting, Estimating, and Organizing Microeconomic Data ; Data Access C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs > C82 - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data ; Data Access C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs > C83 - Survey Methods ; Sampling Methods C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs > C87 - Econometric Software |
Item ID: | 122776 |
Depositing User: | Dr Angelo Leogrande |
Date Deposited: | 25 Nov 2024 15:05 |
Last Modified: | 25 Nov 2024 15:05 |
References: | Aggarwal, S., & Singh, R. (2020). Visual Analytics on Biomedical Dark Data. Aggarwal, S., & Singh, R. (2020). Visual Exploration and Knowledge Discovery from Biomedical Dark Data. arXiv preprint arXiv:2009.13059. Ahlawat, P., Borgman, J., Eden, S., Huels, S., Iandiorio, J., Kumar, A., & Zakahi, P. (2023). A new architecture to manage data costs and complexity. Boston Consulting Group (BCG), 1-12. Ahmadi, R., Ekbatanifard, G., & Bayat, P. (2021). A modified grey wolf optimizer based data clustering algorithm. Applied Artificial Intelligence, 35(1), 63-79. Ahmed, M. B., & Verma, M. R. (2024). DARK WEB DATA CLASSIFICATION USING NEURAL NETWORK. PARADIGM SHIFT: MULTIDISCIPLINARY RESEARCH FOR A CHANGING WORLD, VOLUME-2, 124. Ajis, A. F. M., Ibrahim, A. A. A., & Verma, M. K. (2024, August). Elucidating Theory of Malaysian Data Crisis in Demystifying Dark Data Catalyst. In 2024 IEEE 6th Symposium on Computers & Informatics (ISCI) (pp. 30-36). IEEE. Ajis, A. F. M., Jali, J. M., Ishak, I., & Harun, Q. N. (2023). Enlightening the Repercussion of Dark Data Management towards Malaysian SMEs Sustainability. Environment-Behaviour Proceedings Journal, 8(SI15), 223-229. Akbar, L. S., Al-Mutahr, K., & Nazeh, M. (2018). Aligning IS/IT with Business Allows Organizations to Utilize Dark Data. International Journal of Innovative Technology and Exploring Engineering, 8(2), 80-85. Almeida, C. A., Torres-Espin, A., Huie, J. R., Sun, D., Noble-Haeusslein, L. J., Young, W., ... & Ferguson, A. R. (2022). Excavating FAIR data: the case of the Multicenter Animal Spinal Cord Injury Study (MASCIS), blood pressure, and neuro-recovery. Neuroinformatics, 1-14. Al-Refaie, A. (2010). Grey-data envelopment analysis approach for solving the multi-response problem in the Taguchi method. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224(1), 147-158. Baghery, M., Yousefi, S., & Rezaee, M. J. (2018). Risk measurement and prioritization of auto parts manufacturing processes based on process failure analysis, interval data envelopment analysis and grey relational analysis. Journal of Intelligent Manufacturing, 29(8), 1803-1825. Banafa, A. (2022). 13 Understanding Dark Data. Banafa, A. (2022). Part 3 Big Data, Dark Data, Thick Data, and Small Data. Benvenuti, D. (2023, June). Towards a Framework for Data Pipeline Discovery. In Companion of the 2023 International Conference on Management of Data (pp. 293-294). Bhatia, S., & Alojail, M. (2022). A Novel Approach for Deciphering Big Data Value Using Dark Data. Intelligent Automation & Soft Computing, 33(2). Bin, S., Ping, Y., Yunbai, L., & Xishan, W. (2002, October). Study on the fault diagnosis of transformer based on the grey relational analysis. In Proceedings. International Conference on Power System Technology (Vol. 4, pp. 2231-2234). IEEE. Chakrabarty, S., & Joshi, R. S. (2020). Dark Data: People to People Recovery. In ICT Analysis and Applications: Proceedings of ICT4SD 2019, Volume 2 (pp. 247-254). Springer Singapore. Chan, S., Oktavianti, I., & Nopphawan, P. (2020, October). PMU Time Series Module Adapted for Reduction of Dark Data and the Ensuing Enhanced Analytics for Higher Quality Yields of Ethanol Fuel Production. In 2020 8th International Conference on Condition Monitoring and Diagnosis (CMD) (pp. 412-415). IEEE. Chang, K. C., & Yeh, M. F. (2005). Grey relational analysis based approach for data clustering. IEE Proceedings-Vision, Image and Signal Processing, 152(2), 165-172. Chang, T. C., & Lin, S. J. (1999). Grey relation analysis of carbon dioxide emissions from industrial production and energy uses in Taiwan. Journal of Environmental Management, 56(4), 247-257. Chant, G. G. (2023, May). Dealing with Dark Data–Shining a Light. In International Conference on Knowledge Management in Organizations (pp. 149-160). Cham: Springer Nature Switzerland. Chaudhari, A. A., & Pund, M. A. (2020). Visualization of Uncertainties and Noise in Dark Data: Methods & Techniques. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(3), 2076-2083. Choi, H. O. (2021). A study on identifying the policy demand by innovators using dark data-Daedeok Innopolis using civil complaint. Journal of Digital Contents Society, 22(10), 1645-1652. da Costa, T., & Barrett, M. (2021, April). Improving Cathodic Protection Monitoring Data in the Time of IIoT and Big Data. In NACE CORROSION (p. D051S026R001). NACE. Dimitrov, W., & Chikalanov, A. (2016). Dark Data Governance Reduces Security Risks. Big Data, Knowledge and Control Systems Engineering, 81. Dimitrov, W., Cяpoвa, C., & Petkova, L. (2018). Types of dark data and hidden cybersecurity risks. Epub ahead of print. doi, 10. Dormann, C. F., Purschke, O., Marquez, J. R. G., Lautenbach, S., & Schroeder, B. (2008). Components of uncertainty in species distribution analysis: a case study of the great grey shrike. Ecology, 89(12), 3371-3386. Faghih, N., Bonyadi, E., & Sarreshtehdari, L. (2021). Entrepreneurial Motivation Index: importance of dark data. Journal of Global Entrepreneurship Research, 1-13. Feng, J. C., Huang, H. A., Yin, Y., & Zhang, K. (2019). Comprehensive security risk factor identification for small reservoirs with heterogeneous data based on grey relational analysis model. Water Science and Engineering, 12(4), 330-338. Forker, E. (2023). The Informativeness of Dark Data for Future Firm Performance. Fu, C., Zheng, J., Zhao, J., & Xu, W. (2001). Application of grey relational analysis for corrosion failure of oil tubes. Corrosion Science, 43(5), 881-889. Gautam, A. (2023). Navigating the Risks of Dark Data: An Investigation into Personal Safety. Ge, Z. (2022). Artificial Intelligence and Machine Learning in Data Management. Future And Fintech, The: Abcdi And Beyond, 281. George, A. S., Sujatha, V., George, A. H., & Baskar, T. (2023). Bringing Light to Dark Data: A Framework for Unlocking Hidden Business Value. Partners Universal International Innovation Journal, 1(4), 35-60. George, D. A. S., Sujatha, D. V., George, A. H., & Baskar, D. T. (2023). Bringing Light to Dark Data: A Framework for Unlocking Hidden Business Value. Partners Universal International Innovation Journal, 1 (4), 35–60. Gianna, D. A. (2021). Dark Data Risk Mitigation in Big IoT Data (Doctoral dissertation, Capitol Technology University). Giest, S., & Samuels, A. (2020). ‘For good measure’: data gaps in a big data world. Policy Sciences, 53(3), 559-569. Gimpel, G. (2020). Bringing dark data into the light: Illuminating existing IoT data lost within your organization. Business Horizons, 63(4), 519-530. Gimpel, G. (2021). Dark data: the invisible resource that can drive performance now. Journal of Business Strategy, 42(4), 223-232. Gimpel, G., & Alter, A. (2021). Benefit from the internet of things right now by accessing dark data. IT Professional, 23(2), 45-49. Goyal, S., & Grover, S. (2012). Applying fuzzy grey relational analysis for ranking the advanced manufacturing systems. Grey Systems: Theory and Application, 2(2), 284-298. Guo, H., Deng, S., Yang, J., Liu, J., & Nie, C. (2020). Analysis and prediction of industrial energy conservation in underdeveloped regions of China using a data pre-processing grey model. Energy policy, 139, 111244. Hajiagha, S. H. R., Zavadskas, E. K., & Hashemi, S. S. (2013). Application of stepwise data envelopment analysis and grey incidence analysis to evaluate the effectiveness of export promotion programs. Journal of business economics and management, 14(3), 638-650. Hampton, P. (2020). Keeping a secure hold on data through modern electronic content management. Network Security, 2020(6), 8-11. Han, M., Zhang, R., Qiu, T., Xu, M., & Ren, W. (2017). Multivariate chaotic time series prediction based on improved grey relational analysis. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(10), 2144-2154. Hand, D. J. (2020). Dark data: Why what you don’t know matters. Princeton University Press. Hawkins, B. E., Huie, J. R., Almeida, C., Chen, J., & Ferguson, A. R. (2020). Data dissemination: shortening the long tail of traumatic brain injury dark data. Journal of neurotrauma, 37(22), 2414-2423. Hobart, M. (2020). The ‘dark data’conundrum. Computer Fraud & Security, 2020(7), 13-16. Hsia, K. H., Chen, M. Y., & Chang, M. C. (2004). Comments on data pre-processing for grey relational analysis. Journal of Grey System, 7(1), 15-20. Hsu, L. C., & Wang, C. H. (2007). Forecasting the output of integrated circuit industry using a grey model improved by the Bayesian analysis. Technological Forecasting and Social Change, 74(6), 843-853. Hu, Y. C. (2020). A multivariate grey prediction model with grey relational analysis for bankruptcy prediction problems. Soft Computing, 24(6), 4259-4268. Hu, Y. C. (2020). Constructing grey prediction models using grey relational analysis and neural networks for magnesium material demand forecasting. Applied Soft Computing, 93, 106398. Huang, J., & Sun, H. (2016, August). Grey relational analysis based k nearest neighbor missing data imputation for software quality datasets. In 2016 IEEE International Conference on Software Quality, Reliability and Security (QRS) (pp. 86-91). IEEE. Huang, M., & Wang, B. (2016). Factors influencing CO2 emissions in China based on grey relational analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(4), 555-561. Huang, Y., Shen, L., & Liu, H. (2019). Grey relational analysis, principal component analysis and forecasting of carbon emissions based on long short-term memory in China. Journal of Cleaner Production, 209, 415-423. Ikram, M., Sroufe, R., Rehman, E., Shah, S. Z. A., & Mahmoudi, A. (2020). Do quality, environmental, and social (QES) certifications improve international trade? A comparative grey relation analysis of developing vs. developed countries. Physica A: Statistical Mechanics and its Applications, 545, 123486. Ingólfsdóttir, I. K. (2023). Dark data disclosure: defence against disinformation (Doctoral dissertation). Jackson, T., & Hodgkinson, I. R. (2022). ‘Dark data’is killing the planet–we need digital decarbonisation. The Conservation online. Javed, S. A., & Liu, S. (2018). Evaluation of outpatient satisfaction and service quality of Pakistani healthcare projects: application of a novel synthetic grey incidence analysis model. Grey Systems: Theory and Application, 8(4), 462-480. Javed, S. A., Liu, S., Mahmoudi, A., & Nawaz, M. (2019). Patients' satisfaction and public and private sectors' health care service quality in Pakistan: Application of grey decision analysis approaches. The International journal of health planning and management, 34(1), e168-e182. Jha, A., & Singh, S. R. (2022). Human-Machine Convergence and Disruption of Socio-Cognitive Capabilities. International Journal of Next-Generation Computing, 13(3). Jin, X., Xu, X., Song, X., Li, Z., Wang, J., & Guo, W. (2013). Estimation of leaf water content in winter wheat using grey relational analysis–partial least squares modeling with hyperspectral data. Agronomy Journal, 105(5), 1385-1392. Jolliffe, I. (2021). Dark data: Why what you don’t know matters. Keller-Fröhlich, M. (2022, November). IMPACT OF DARK DATA ON THE VALUE DRIVEN DATA MANAGEMENT STRATEGY OF MANUFACTURERS–A LITERATURE REVIEW. In 26th European Scientific Conference of Doctoral Students (p. 59). Kim, H. S. (2024). Dark Data in Real-World Evidence: Challenges, Implications, and the Imperative of Data Literacy in Medical Research. Journal of Korean Medical Science, 39(9). Kucukonder, H., Demirarslan, P. C., Burgut, A., & Boga, M. (2019). A hybrid approach of data envelopment analysis based grey relational analysis: a study on egg yield. Lager, O. (2021). Dark Data: Characteristics, steps to utilize it & factors influencing its utilization (Master's thesis). Lee, Y. T. (2016). Principle study of head meridian acupoint massage to stress release via grey data model analysis. Evidence‐Based Complementary and Alternative Medicine, 2016(1), 4943204. Li, X., Hipel, K. W., & Dang, Y. (2015). An improved grey relational analysis approach for panel data clustering. Expert Systems with Applications, 42(23), 9105-9116. Lin, C. H. (2008). Frequency-domain features for ECG beat discrimination using grey relational analysis-based classifier. Computers & Mathematics with Applications, 55(4), 680-690. Liu, S., Lin, C., Tao, L., Javed, S. A., Fang, Z., & Yang, Y. (2020). On Spectral Analysis and New Research Directions in Grey System Theory. Journal of Grey System, 32(1). Liu, S., Yang, Y., & Forrest, J. (2017). Grey data analysis. Springer Singapore, Singapore, Doi, 10(1007), 978-981. Liu, X., Liu, H., Zhao, X., Han, Z., Cui, Y., & Yu, M. (2022). A novel neural network and grey correlation analysis method for computation of the heat transfer limit of a loop heat pipe (LHP). Energy, 259, 124830. Liu, Y., Du, J. L., Zhang, R. S., & Forrest, J. Y. L. (2019). Three way decisions based grey incidence analysis clustering approach for panel data and its application. Kybernetes, 48(9), 2117-2137. Liu, Y., Wang, Y., Gao, L., Guo, C., Xie, Y., & Xiao, Z. (2021). Deep hash-based relevance-aware data quality assessment for image dark data. ACM/IMS Transactions on Data Science, 2(2), 1-26. Liu, Y., Wang, Y., Zhou, K., Yang, Y., Liu, Y., Song, J., & Xiao, Z. (2019). A framework for image dark data assessment. In Web and Big Data: Third International Joint Conference, APWeb-WAIM 2019, Chengdu, China, August 1–3, 2019, Proceedings, Part I 3 (pp. 3-18). Springer International Publishing. Lovato, J., & Zimmerman, J. (2021). Dark Data: making dark data FAIR. Maju, S. V., & Gnana Prakasi, O. S. (2022). Utilization of Dark Data from Electronic Health Records for the Early Detection of Alzheimer’s Disease. In Recent Advances in Artificial Intelligence and Data Engineering: Select Proceedings of AIDE 2020 (pp. 195-203). Springer Singapore. Maju, S. V., & Prakasi, O. S. (2022). Design of a Decision Making Model for Integrating Dark Data from Hybrid Sectors. Grenze International Journal of Engineering & Technology (GIJET), 8(1). Matanović, A. J., Bošnjak, M., & Sremac, J. (2022, July). Testing the validity of" dark data" on the Late Miocene freshwater cockles housed in the CNHM. In Mathematical methods and terminology in geology 2022. Md Ajis, A. F. (2023). Dark data management among Malaysian small and medium enterprises: a grounded theory analysis (Doctoral dissertation, Universiti Teknologi MARA (UiTM)). Meil, J. (2021, April). Programmatic Labeling of Dark Data for Artificial Intelligence in Spatial Informatics. In EGU General Assembly Conference Abstracts (pp. EGU21-16326). Mohr, J. J., Adams, D., Barkhouse, W., Beldica, C., Bertin, E., Cai, Y. D., ... & Stoughton, C. (2008, July). The dark energy survey data management system. In Observatory Operations: Strategies, Processes, and Systems II (Vol. 7016, pp. 176-191). SPIE. Moumeni, L., Slimani, I., El Farissi, I., Saber, M., & Belkasmi, M. G. (2021, June). Dark data as a new challenge to improve business performances: review and perspectives. In 2021 International Conference on Digital Age & Technological Advances for Sustainable Development (ICDATA) (pp. 216-220). IEEE. Munot, K., Mehta, N., Mishra, S., & Khanna, B. (2019, March). Importance of dark data and its applications. In 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN) (pp. 1-6). IEEE. Murphy, C., & Thomas, F. P. (2024). Illuminating dark data: Advancing spinal cord medicine through reporting on “negative” data. The Journal of Spinal Cord Medicine, 47(1), 1-2. Neha, & Pahwa, P. (2020). Dark Data Analytics Using Blockchain Technology. In Advances in Data Sciences, Security and Applications: Proceedings of ICDSSA 2019 (pp. 467-474). Springer Singapore. Ng, D. K. (1994). Grey system and grey relational model. ACM SIGICE Bulletin, 20(2), 2-9. Nguyen, P. H., Sen, S., Jourdan, N., Cassoli, B., Myrseth, P., Armendia, M., & Myklebust, O. (2022). Software engineering and AI for data quality in cyber-physical systems-sea4dq'21 workshop report. ACM SIGSOFT Software Engineering Notes, 47(1), 26-29. Niu, B., Shi, M., Zhang, Z., Li, Y., Cao, Y., & Pan, S. (2022). Multi-objective optimization of supply air jet enhancing airflow uniformity in data center with Taguchi-based grey relational analysis. Building and Environment, 208, 108606. Pakkar, M. S. (2016). An integrated approach to grey relational analysis, analytic hierarchy process and data envelopment analysis. Journal of Centrum Cathedra, 9(1), 71-86. Pawlewitz, J., Mankel, A., Jacquin, S., & Basile, N. (2020, May). The digital twin in a brownfield environment: How to manage dark data. In Offshore Technology Conference (p. D021S018R002). OTC. Perini, D. J., Batarseh, F. A., Tolman, A., Anuga, A., & Nguyen, M. (2023). Bringing dark data to light with AI for evidence-based policymaking. In AI Assurance (pp. 531-557). Academic Press. Priya, S., Vidyapeeth, L. S., & Mahajan, S. (2022). Unveiling the Silver Lining of Dark Data for Organizations. Amity Journal of Strategic Management. Vol.-05, Issue-02. July-Dec., 2022 Purss, M. B., Lewis, A., Oliver, S., Ip, A., Sixsmith, J., Evans, B., ... & Chan, T. (2015). Unlocking the Australian landsat archive–from dark data to high performance data infrastructures. GeoResJ, 6, 135-140. Raca, K. (2021). Enterprise Dark Data. In Data Analysis and Classification: Methods and Applications 29 (pp. 119-131). Springer International Publishing. Rajesh, R. (2024). Grey models for data analysis and decision-making in uncertainty during pandemics. International Journal of Disaster Risk Reduction, 104881. Ravindranathan, P., Ashok, P., & Prabhu, S. (2024, January). Illuminating the Dark: Gaining Insights and Managing Risks with Dark Analytics. In 2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE) (pp. 1-6). IEEE. Roman, D., Prodan, R., Nikolov, N., Soylu, A., Matskin, M., Marrella, A., ... & Kharlamov, E. (2022). Big data pipelines on the computing continuum: tapping the dark data. Computer, 55(11), 74-84. Ross, S. J. (2021). Afraid of the Dark (Data). ISACA Journal, (6). Sallehuddin, R., Shamsuddin, S. M. H., & Hashim, S. Z. M. (2008, November). Application of grey relational analysis for multivariate time series. In 2008 Eighth International Conference on Intelligent Systems Design and Applications (Vol. 2, pp. 432-437). IEEE. Schembera, B. (2021). Like a rainbow in the dark: metadata annotation for HPC applications in the age of dark data. The Journal of Supercomputing, 77(8), 8946-8966. Schembera, B., & Durán, J. M. (2020). Dark data as the new challenge for big data science and the introduction of the scientific data officer. Philosophy & Technology, 33, 93-115. Seki, K., Takamichi, S., Saeki, T., & Saruwatari, H. (2023, June). Text-to-speech synthesis from dark data with evaluation-in-the-loop data selection. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1-5). IEEE. Shah, M., Malik, F., Suliman, M., Rahman, N., Ullah, I., Ullah, S., ... & Alam, S. (2024). Dark Data in Accident Prediction: Using AdaBoost and Random Forest for Improved Accuracy. Journal of Computing & Biomedical Informatics, 7(02). Shave, L. (2023). The need for lifelong learning. IQ: The RIMPA Quarterly Magazine, 39(4), 26-30. Shetty, S. (2021). How to tackle dark data. Available via Gartner: https://www. gartner. com/sma rterwithgartner/how-to-tackle-dark-data. Accessed, 20. Shimizu, N., Ueno, O., & Komata, C. (1998, April). Introduction of time series data analysis using grey system theory. In 1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No. 98EX111) (Vol. 2, pp. 67-72). IEEE. Shin, S. I., & Kwon, M. M. (2023). Dark data: Why What You Don’t Know Matters: Dark Data: Why What You Don’t Know Matters, by David J. Hand, New Jersey, US, Princeton University Press, 2020, 330 pp., $29.95 (hardback), ISBN: 9780691182377. Singh, J., Upadhyay, D., Singh, M., & Sagar, P. (2021). Towards a Comparative Analysis of Regression Based Machine Learning Techniques. In Proceedings of the International Conference on Innovative Computing & Communication (ICICC). Singh, P. K. (2021). Dark data analysis using Intuitionistic Plithogenic graphs. International Journal of Neutrosophic Sciences, 16(2), 80-100. Škrinjarić, T., & Šego, B. (2021). Evaluating business performance using data envelopment analysis and grey relational analysis. In Handbook of Research on Engineering, Business, and Healthcare Applications of Data Science and Analytics (pp. 115-148). IGI Global. Slimani, I., Slimani, N., Achchab, S., Saber, M., El Farissi, I., Sbiti, N., & Amghar, M. (2022). Automated machine learning: the new data science challenge. Int. J. Electr. Comput. Eng., 12(4), 4243-4252. Song, Q., & Shepperd, M. (2011). Predicting software project effort: A grey relational analysis based method. Expert Systems with Applications, 38(6), 7302-7316. Song, Q., Shepperd, M., & Mair, C. (2005, September). Using grey relational analysis to predict software effort with small data sets. In 11th IEEE International Software Metrics Symposium (METRICS'05) (pp. 10-pp). IEEE. Stahlman, G. R. (2020). Exploring the long tail of astronomy: A mixed-methods approach to searching for dark data (Doctoral dissertation, The University of Arizona). Stahlman, G., Heidorn, P. B., & Steffen, J. (2018). The astrolabe project: identifying and curating astronomical ‘dark data’through development of cyberinfrastructure resources. In EPJ Web of Conferences (Vol. 186, p. 03003). EDP Sciences. Sundarraj, M., & Natrajan, R. (2019). A sustainable method to handle dark data in a smart factory. Software Quality Professional, 21(4), 21-33. Suzen, N., Mirkes, E. M., Roland, D., Levesley, J., Gorban, A. N., & Coats, T. J. (2023, December). What is Hiding in Medicine’s Dark Matter? Learning with Missing Data in Medical Practices. In 2023 IEEE International Conference on Big Data (BigData) (pp. 4979-4986). IEEE. Taulli, T. (2019). What You Need To Know About Dark Data. Forbes, October, 27. Teymourlouei, H., & Jackson, L. (2021). Dark data: managing cybersecurity challenges and generating benefits. In Advances in Parallel & Distributed Processing, and Applications: Proceedings from PDPTA'20, CSC'20, MSV'20, and GCC'20 (pp. 91-104). Springer International Publishing. Tsaur, R. C. (2008). Forecasting analysis by using fuzzy grey regression model for solving limited time series data. Soft Computing, 12(11), 1105-1113. Tsolas, I. E. (2019). Utility exchange traded fund performance evaluation. A comparative approach using grey relational analysis and data envelopment analysis Modelling. International Journal of Financial Studies, 7(4), 67. Tzeng, C. J., Lin, Y. H., Yang, Y. K., & Jeng, M. C. (2009). Optimization of turning operations with multiple performance characteristics using the Taguchi method and Grey relational analysis. Journal of materials processing technology, 209(6), 2753-2759. Upham, N. S., Poelen, J. H., Paul, D., Groom, Q. J., Simmons, N. B., Vanhove, M. P., ... & Agosti, D. (2021). Liberating host–virus knowledge from biological dark data. The Lancet Planetary Health, 5(10), e746-e750. Wang, C. N., Dang, T. T., Nguyen, N. A. T., & Le, T. T. H. (2020). Supporting better decision-making: A combined grey model and data envelopment analysis for efficiency evaluation in e-commerce marketplaces. Sustainability, 12(24), 10385. Wang, C. N., Lin, H. S., Hsu, H. P., Le, V. T., & Lin, T. F. (2016). Applying data envelopment analysis and grey model for the productivity evaluation of Vietnamese agroforestry industry. Sustainability, 8(11), 1139. Wang, S., Ma, Q., & Guan, Z. (2007, November). Measuring hospital efficiency in China using grey relational analysis and data envelopment analysis. In 2007 IEEE International Conference on Grey Systems and Intelligent Services (pp. 135-139). IEEE. Warangal, T. A Review on machine learning models used for anomaly detection. Wu, C. H. (2007). On the application of grey relational analysis and RIDIT analysis to Likert scale surv Hsia, K. H., Chen, M. Y., & Chang, M. C. (2004). Comments on data pre-processing for grey relational analysis. Journal of Grey System, 7(1), 15-20. Xia, R., Gao, Y., Zhu, Y., Gu, D., & Wang, J. (2022). An efficient method combined data-driven for detecting electricity theft with stacking structure based on grey relation analysis. Energies, 15(19), 7423. Xuerui, T., & Yuguang, L. (2004). Using grey relational analysis to analyze the medical data. Kybernetes, 33(2), 355-362. Xuerui, T., Julong, D., Hongxing, P., & Sifeng, L. (2007, November). Grey system and grey data management in medicine. In 2007 IEEE International Conference on Grey Systems and Intelligent Services (pp. 163-166). IEEE. Yang, W., & Wu, Y. (2019). A Novel TOPSIS Method Based on Improved Grey Relational Analysis for Multiattribute Decision‐Making Problem. Mathematical Problems in Engineering, 2019(1), 8761681. Yang, Y., Liu, S., & Xie, N. (2019). Uncertainty and grey data analytics. Marine Economics and Management, 2(2), 73-86. Yin, K., Zhang, Y., & Li, X. (2017). Research on storm-tide disaster losses in China using a new grey relational analysis model with the dispersion of panel data. International journal of environmental research and public health, 14(11), 1330. Yu, X., Skeie, K. S., Knudsen, M. D., Ren, Z., Imsland, L., & Georges, L. (2022). Influence of data pre-processing and sensor dynamics on grey-box models for space-heating: Analysis using field measurements. Building and Environment, 212, 108832. Zeng, G., Jiang, R., Huang, G., Xu, M., & Li, J. (2007). Optimization of wastewater treatment alternative selection by hierarchy grey relational analysis. Journal of environmental management, 82(2), 250-259. Zhai, L. Y., Khoo, L. P., & Zhong, Z. W. (2009). Design concept evaluation in product development using rough sets and grey relation analysis. Expert systems with applications, 36(3), 7072-7079. Zhang, L. J., & Li, Z. J. (2006). Gene selection for classifying microarray data using grey relation analysis. In Discovery Science: 9th International Conference, DS 2006, Barcelona, Spain, October 7-10, 2006. Proceedings 9 (pp. 378-382). Springer Berlin Heidelberg. Zhang, S., & Zhou, Y. (2015). Grey wolf optimizer based on Powell local optimization method for clustering analysis. Discrete Dynamics in Nature and Society, 2015(1), 481360. Zhang, Z., Wang, Y., & Xie, L. (2018). A novel data integrity attack detection algorithm based on improved grey relational analysis. IEEE Access, 6, 73423-73433. Zhong, K., Jackson, T., West, A., & Cosma, G. (2024, June). Building a Sustainable Knowledge Management System from Dark Data in Industrial Maintenance. In International Conference on Knowledge Management in Organizations (pp. 263-274). Cham: Springer Nature Switzerland. Zhou, K., & Song, J. (2021). Introduction to the Special Issue on Learning-based Support for Data Science Applications. ACM/IMS Transactions on Data Science, 2(2), 1-1. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/122776 |