RANDRIAMANANTENA, Rija R. and RAVELOSON, Armel R. (2025): Sustainable intensification and the land sparing mechanism.
![]() |
PDF
MPRA_paper_125884.pdf Download (384kB) |
Abstract
The analysis of the malagasy “land rebound effect,” conducted using an ordinary least squares (OLS) linear regression model and panel data of 27 countries on World Bank time series data from 1990 to 2022, quantitatively demonstrates the relationship between agricultural value added and the expansion of cultivated land areas. The findings suggest three priority interventions: contextual adaptation of technologies through participatory approaches, strengthening land tenure security via formal certification tools, and building the capacities of local producers including training, financing, and economic diversification. However, there are methodological limitations due to the lack of detailed data on land dynamics and institutional constraints within rural communities, calling for complementary field studies to ground the econometric analysis in territorial realities.
Item Type: | MPRA Paper |
---|---|
Original Title: | Sustainable intensification and the land sparing mechanism |
English Title: | Sustainable intensification and the land sparing mechanism |
Language: | English |
Keywords: | Agriculture, land sparing, land use, deforestation, OLS regression, panel data, Madagascar, sustainable intensification |
Subjects: | C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C33 - Panel Data Models ; Spatio-temporal Models O - Economic Development, Innovation, Technological Change, and Growth > O1 - Economic Development > O13 - Agriculture ; Natural Resources ; Energy ; Environment ; Other Primary Products Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q15 - Land Ownership and Tenure ; Land Reform ; Land Use ; Irrigation ; Agriculture and Environment Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q18 - Agricultural Policy ; Food Policy Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q2 - Renewable Resources and Conservation > Q24 - Land |
Item ID: | 125884 |
Depositing User: | Rojo Armel RAVELOSON |
Date Deposited: | 27 Aug 2025 08:38 |
Last Modified: | 27 Aug 2025 21:36 |
References: | 1] Amare, M., Barbier, E., & Bluffstone, R. (2020). Agricultural productivity and defor- estation: Evidence from input subsidies and extension services. Ecological Economics, 173, 106681. [2] Angelsen, A. (2010). Policies for reduced de- forestation and their impact on agricultural production. PNAS, 107(46), 19639–19644. [3] Angelsen, A., & Kaimowitz, D. (Eds.). (2001). Agricultural technologies and tropical deforesta- tion. CABI Publishing. [4] Baldos, U. L. C., & Hertel, T. W. (2019). Technology spillovers and land use change: Em- pirical evidence from global agriculture. Ameri- can Journal of Agricultural Economics, 101(5), 1208–1226. [5] Baldos, U. L. C. (n.d.). Uris-Memo_Fine. Mémo interne, date inconnue. [6] Carrasco, L. R., Larrosa, C., Milner-Gulland, E. J., & Edwards, D. P. (2014). A double-edged sword for tropical forests. Science, 346(6205), 38–40. https://doi.org/10.1126/science. 1260350 [7] Cronauer, C., Weituschat, C. S., Hampf, A., Undorf, S., Gleixner, S., Waid, J., & Murken, L. (2024). Analyse des risques climatiques pour la planification de l’adaptation au changement climatique dans le secteur agricole à Madagas- car. Rapport PIK/GIZ pour le BMZ. https: //doi.org/10.48485/pik.2024.005 [8] Coxhead, I., Shively, G. E., & Rola, A. (2001). Agricultural intensification, local labor mar- kets, and deforestation in the Philippines. In Angelsen, A. & Kaimowitz, D. (Eds.), Agri- cultural technologies and tropical deforestation (pp. ???). CABI Publishing. [9] Ewers, R. M., Scharlemann, J. P. W., Balmford, A., & Green, R. E. (2009). Do increases in agricultural yield spare land for nature? Global Change Biol- ogy, 15(7), 1716–1726. https://doi.org/10. 1111/j.1365-2486.2009.01849.x [10] Ferreira, J., Assunção, J., Pirard, R., Souza, F., Gandour, C., Hochuli, D., & Rocha, R. (2019). Agricultural productivity and forest conservation: Evidence from the Brazilian Amazonprioritylist.American Journal of Agri- cultural Economics, 101(5), 1281–1301. [11] HESAT 2030. (n.d.). Hautes Études Stratégiques en Afrique et Transi- tion 2030. Consulté en mai 2025. https://www.hesat2030.org/ [12] Hertel, T. W., Ramankutty, N., & Baldos, U. L. C. (2014). Global market integration increases the risk of agriculture–environment trade-offs. PNAS, 111(9), 3261–3266. https: //doi.org/10.1073/pnas.1314787111 [13] Hertel, T. W., Ramankutty, N., & Baldos, U. L. C. (n.d.). Note sur les contributions des au- teurs ou la soumission pour PNAS. Document non publié. [14] Jayachandran, S., de Laat, J., Lambin, E., & Stanton, C. (2017). Cash for carbon: A randomized trial of payments for ecosys- tem services to reduce deforestation. Science, 357(6348), 267–273. [15] Kniss, A. R., Savage, S. D., & Jabbour, R. (2016). Commercial crop yields reveal strengths and weaknesses for organic agriculture in the United States. PLOS ONE, 11(8), e0161673. [16] Kremen, C., & Merenlender, A. M. (2018). Landscapes that work for biodiversity and 6 people. Science, 362(6412), eaau6020. https: //doi.org/10.1126/science.aau6020 [17] Navalona, R. (2024, 13 juillet). Filière riz : Plus de 100 000 paysans adoptent la technique PAPriz. Midi Madagasikara. Consulté en mai 2025. https://midi-madagasikara.mg [18] Phalan, B., Green, R. E., Dicks, L. V., Dotta, G., Feniuk, C., Lamb, A., ... & Balmford, A. (2016). How can higher- yield farming help to spare nature? Sci- ence, 351(6272), 450–451. https://doi.org/ 10.1126/science.aad0055 [19] Phelps, J., Carrasco, L. R., Webb, E. L., Koh, L. P., & Pascual, U. (2013). Agricul- tural intensification escalates future conserva- tion costs. PNAS, 110(23), 9307–9312. [20] Smith, L. G., Kirk, G. J. D., Jones, P. J., & Smith, P. (2019). The greenhouse gas impacts of converting food production in England and Wales to organic methods. Nature Communi- cations, 10, 4641. [21] Stevenson, J. R., Villoria, N. B., Byerlee, D., Kelley, T., & Maredia, M. (2013). Green Revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production. PNAS, 110(21), 8363– 8368. [22] Villoria, N. B., Byerlee, D., & Stevenson, J. R. (2014). The effects of agricultural techno- logical progress on deforestation: What do we really know? Applied Economic Perspectives and Policy, 36(2), 211–237. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/125884 |