Rennard, Jean-Philippe (2006): Artificiality in Social Sciences. Published in: Rennard, J.-P. (Ed.), Handbook of Research on Nature Inspired Computing for Economics and Management, IGR (2006): pp. 1-15.
Preview |
PDF
MPRA_paper_1458.pdf Download (82kB) | Preview |
Abstract
This text provides with an introduction to the modern approach of artificiality and simulation in social sciences. It presents the relationship between complexity and artificiality, before introducing the field of artificial societies which greatly benefited from the computer power fast increase, gifting social sciences with formalization and experimentation tools previously owned by "hard" sciences alone. It shows that as "a new way of doing social sciences", artificial societies should undoubtedly contribute to a renewed approach in the study of sociality and should play a significant part in the elaboration of original theories of social phenomena.
Item Type: | MPRA Paper |
---|---|
Institution: | Grenoble Ecole de Management |
Original Title: | Artificiality in Social Sciences |
Language: | English |
Keywords: | artificial societies; multi-agent systems; distributed artificial intelligence; complexity |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C63 - Computational Techniques ; Simulation Modeling |
Item ID: | 1458 |
Depositing User: | Jean-Philippe Rennard |
Date Deposited: | 15 Jan 2007 |
Last Modified: | 03 Oct 2019 04:56 |
References: | Axelrod, R. (1984). The evolution of cooperation. New York: Basic Books. Axelrod, R. (1997). The complexity of cooperation: Agent-based models of competition and collaboration. London: University College London Press. Axelrod, R. (2006). Advancing the art of simulation in the social sciences. In J.-P. Rennard (Ed.), Handbook of research on nature inspired computing for economics and management. Hershey, PA: IGR. Axelrod, R., & Tesfatsion, L. (forthcoming). A guide for newcomers to agent-based modeling in the social sciences. In L. Tesfatsion & K. Judd (Eds.), Handbook of computational economics, vol 2: Agent-based computational economics. Amsterdam: North-Holland. Axtell, R. L. (2000). Effect of interaction topology and activation regime in several multi-agent systems (Tech. Rep. No. 00-07-039). Santa Fe Institute. Baas, N. A. (1994). Emergence, hierarchies, and hyperstructures. In C. Langton (Ed.), Artificial life 3 (p. 515-537). Reading, MA: Addison-Wesley. Bedau, M. A. (1997). Weak emergence. In T. J. (Ed.), Philosophical perspectives: Mind, causation and world (p. 375-399). Malden MA: Blackwell. Bonabeau, E., Dorigo, M., & Théraulaz, G. (1999). Swarm intelligence. from natural to artificial systems. Oxford: Oxford University Press. Cariani, P. (1992). Emergence and artificial life. In C. Langton (Ed.), Artificial life 2 (p. 775-797). Redwood city: Addison-Wesley. Castelfranchi, C. (2000). Engineering social order. In LNCS, proceedings of the first international workshop on engineering societies in the agent world (Vol. 1972, p. 1-18). London: Springer. Chalmers, D. J. (2002). Varieties of Emergence. Retrieved 12/15/2005, 2005, from http://consc.net/papers/granada.html Conte, R., Gilbert, N., & Sichman, J. (1998). MAS and social simulation: A suitable commitment. In J. Sichman, R. Conte, & N. Gilbert (Eds.), Proceedings 1st. international workshop on multi-agent based simulation (Vol. 1534, p. 1-9). Berlin: Springer Verlag. Croquette, V. (1997). Déterminisme et chaos. In Pour la Science (Ed.), L’ordre du chaos (p. 64-87). Paris: Belin. Demazeau, Y., & Müller, J.-P. (1991). Decentralized AI 2. Amsterdam: Elsevier Norh Holland. Deneubourg, J.-L., Goss, S., Beckers, R., & Sandini, G. (1991). Collectively self-solving problems. In A. Babloyantz (Ed.), Self-organization, emergent properties and learning. New York: Plenum. Deneubourg, J.-L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., & Chretien, L. (1991). The dynamics of collective sorting: Robots-like ant and ant-like robots. In J. Meyer & S. Wilson (Eds.), Proceedings first conference on simulation of adaptive behavior: From animals to animats (p. 356-365). Cambridge, MA: MIT Press. Drogoul, A. (2005). Les sytèmes multi-agents. In J. Lautrey & J.-F. Richard (Eds.), L’intelligence. Paris: Hermès. Durkheim, E. (2004). Le suicide. Paris: PUF. Emmeche, C., Koppe, S., & Stjernfelt, F. (1997). Explaining emergence. Journal of General Philosophy of Science, 28, 83-119. Epstein, J. M., & Axtell, R. L. (1996). Growing artificial societies. Social sciences from the bottom up. Cambridge, MA: MIT Press. Ferber, J. (1999). Multi-agent systems. London: Addison-Wesley. Gershenson, C. (2002). Philosophical ideas on the simulation of social behaviour. Journal of Artificial Societies and Social Simulation, 5 (3), http://jasss.soc.surrey.ac.uk/5/3/8.html. Gilbert, N. (1995a). Emergence in social simulation. In N. Gilbert & R. Conte (Eds.), Artificial societies. the computer simulation of social life (p. 144-156). London: UCL Press. Gilbert, N. (1995b). Simulation: An emergent perspective. Lecture given at the Conference on New Technologies in the Social Sciences. Bournemouth, UK, 27-29 October, 1995. Gilbert, N. (2000). Modelling sociality: The view from europe. In T. Kohler & G. Gumerman (Eds.), Dynamics in human and primates societies: Agent-based modelling of social and spatial process (p. 355-372). Oxford: Oxford University Press. Gilbert, N., & Conte, R. (1995). Artificial societies. the computer simulation of social life. London: UCL Press. Gilbert, N., & Troitzsch, K. (2005). Simulation for the social scientist. Maidenhead: Open University Press. Goldspink, C. (2000). Modelling social systems as complex: Towards a social simulation meta-model. Journal of Artificial Societies and Social Simulation, 3 (2), http://www.soc.surrey.ac.uk/JASSS/3/2/1.html. Goldspink, C. (2002). Methodological implications of complex systems approaches to sociality: Simulation as a foundation of knowledge. Journal of Artificial Societies and Social Simulation, 5 (1), http://www.soc.surrey.ac.uk/JASSS/5/1/3.html. Halpin, B. (1999). Simulation in society. American Behavioral Scientist, 42, 1488-1508. Holland, J. (1999). Emergence. Cambridge, MA: Perseus books. Kubik, A. (2003). Toward a formalization of emergence. Artificial Life, 9, 41-65. Langton, C. G. (1989). Artificial life. In C. G. Langton (Ed.), Artificial life 1. Redwood city:Addison-Wesley. Langton, C. G. (1990). Computation at the edge of chaos: Phase transition and emergent computation. Physica D, 42, 12-37. Lansing, J. (2002). "artificial societies" and the social sciences. Artificial Life, 8, 279-292. Latané, B. (1996). Dynamic social impact: Robust predictions from simple theory. In R. Hegselmann, U. Mueller, & K. Troitzsch (Eds.), Modelling and simulating in the social sciences from a philosophy science point of view (p. 287-310). Kluwer. Lenaerts, T., Chu, D., & Watson, R. (2005). Dynamical hierarchies. Artificial Life, 11, 403-405. Morin, E. (1977). La méthode 1i. Paris: 1977. Nowak, A., & Latané, B. (1993). Simulating the emergence of social order from individual behaviour. In N. Gilbert & J. Doran (Eds.), Simulating societies: The computer simulation of social phenomena. London: UCL Press. Ostrom, T. (1988). Computer simulation: The third symbol system. Journal of Experimental Social Psychology, 24, 381-392. Pancs, R., & Vriend, N. (2003). Schelling’s spatial proximity model of segregation revisited (Dpt. of Economics, WP 487). University of London. Poincaré, H. (1892). Les méthodes nouvelles de la mécanique céleste. Paris: Blanchard. Pyka, A. (2006). Modelling qualitative development - agent based approaches in economics. In J.-P. Rennard (Ed.), Handbook of research on nature inspired computing for economics and management. Hershey, PA: IGR. Rennard, J.-P. (2004). Perspectives for strong artificial life. In L. de Castro & F. von Zuben (Eds.), Recent developments in biologically inspired computing. Hershey: Idea Group Inc. Ronald, E., Sipper, M., & Capcarrère, M. (1999). Design, observation, surprise! a test of emergence. Artificial Life, 5 (3), 225-239. Sawyer, R. (2003). Artificial societies: Multiagent systems and micro-macro link in sociological theory. Sociological Methods and Research, 31 (3), 325-363. Sawyer, R. (2004). Social explanation and computational simulation. Philosophical Explorations, 7, 219-231. Schelling, T. C. (1971). Dynamic model of segregation. Journal of Mathematical Sociology, 1 (2), 143-186. Schelling, T. C. (1978). Micromotives and macrobehavior. New York: Norton. Schillo, M., Fischer, K., & Klein, C. (2000). The micro-macro link in DAI and sociology. Lecture Notes in Artificial Intelligence, 1979. Simon, H. (1996). The sciences of the artificial (3rd ed.). Cambridge, MA: MIT, Press. Steels, L. (1990). Cooperation between distributed agents through self-organization. In Y. Demazeau & J.-P. Müller (Eds.), Decentralized AI (p. 175-196). Amsterdam: Elsevier. Steels, L. (1997). Artificial life roots of artificial intelligence. In C. Langton (Ed.), Artificial life. An overview (p. 75-110). Cambridge, MA: MIT Press. Steels, L., & Brook, R. (1994). The artificial life route to artificial intelligence. New Haven, CT: Lawrence Eribaum Ass. Tesfatsion, L. (2002). Agent-based computational economics: Growing economies from the bottom up. Artificial Life, 8, 55-82. Troitzsch, K. G. (1997). Social simulation – origins, prospects, purposes. In R. Conte, R. Hegselmann, & P. Terna (Eds.), Simulating social phenomena (Vol. 456, p. 41-54). Berlin: Springer-Verlag. Waldrop, M. (1992). Complexity: The emerging science at the edge of chaos. New York: Simon and Schuster. Wolfram, S. (1984). Universality and complexity in cellular automata. Physica D, 10, 1-35. Wolfram, S. (2002). A new kind of science. Champain: Wolfram Media Inc. Wooldridge, M., & Jennings, N. (1995). Intelligent agents: Theory and practice. Knowledge Engineering Review, 10 (2), 115-152. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/1458 |