Pammolli, Fabio and Fu, Dongfeng and Buldyrev, Sergey V. and Riccaboni, Massimo and Matia, Kaushik and Yamasaki, Kazuko and Stanley, H. Eugene (2006): A Generalized Preferential Attachment Model for Business Firms Growth Rates: I. Empirical Evidence. Published in: The European Physical Journal B , Vol. 57, No. 2 (16 May 2007): pp. 127-130.
Preview |
PDF
MPRA_paper_15983.pdf Download (141kB) | Preview |
Abstract
We introduce a model of proportional growth to explain the distribution P(g) of business firm growth rates. The model predicts that P(g) is Laplace in the central part and depicts an asymptotic power-law behavior in the tails with an exponent ζ = 3. Because of data limitations, previous studies in this field have been focusing exclusively on the Laplace shape of the body of the distribution. We test the model at different levels of aggregation in the economy, from products, to firms, to countries, and we find that the its predictions are in good agreement with empirical evidence on both growth distributions and size-variance relationships.
Item Type: | MPRA Paper |
---|---|
Original Title: | A Generalized Preferential Attachment Model for Business Firms Growth Rates: I. Empirical Evidence |
Language: | English |
Keywords: | Gibrat Law; Firm Growth; Size Distribution |
Subjects: | D - Microeconomics > D2 - Production and Organizations > D21 - Firm Behavior: Theory L - Industrial Organization > L2 - Firm Objectives, Organization, and Behavior > L25 - Firm Performance: Size, Diversification, and Scope E - Macroeconomics and Monetary Economics > E0 - General > E01 - Measurement and Data on National Income and Product Accounts and Wealth ; Environmental Accounts L - Industrial Organization > L0 - General > L00 - General L - Industrial Organization > L6 - Industry Studies: Manufacturing > L60 - General L - Industrial Organization > L6 - Industry Studies: Manufacturing > L65 - Chemicals ; Rubber ; Drugs ; Biotechnology L - Industrial Organization > L1 - Market Structure, Firm Strategy, and Market Performance > L16 - Industrial Organization and Macroeconomics: Industrial Structure and Structural Change ; Industrial Price Indices E - Macroeconomics and Monetary Economics > E1 - General Aggregative Models > E17 - Forecasting and Simulation: Models and Applications |
Item ID: | 15983 |
Depositing User: | Laknori |
Date Deposited: | 01 Jul 2009 09:17 |
Last Modified: | 27 Sep 2019 03:02 |
References: | Gibrat R. (1931): Les Inegalites Economiques, Librairie du Recueil Sirey, Paris. Kapteyn J., Uven M.J. (1916): Skew Frequency Curves in Biology and Statistics, Hoitsema Brothers, Groningen. Zipf G. (1949): Human Behavior and the Principle of Least Effort, Addison-Wesley, Cambridge, MA. Gabaix X. (1999): “Zipf's Law For Cities: An Explanation”, Quarterly Journal of Economics 114, 739–767. Steindl J. (1965): Random Processes and the Growth of Firms: A study of the Pareto law, London, Griffin. Sutton J. (1997): “Gibrat's legacy”, Journal of Economic Literature 35, 40-59. Kalecki M. (1945): “On the Gibrat distribution”, Econometrica 13, 161-170. Simon H. A. (1955): “On a class of skew distributions functions”, Biometrika 42, 425-440. Ijiri Y. & Simon H. A., (1977): Skew distributions and the sizes of business firms, North-Holland Pub. Co., Amsterdam. Stanley M. H. R., Amaral L. A. N., Buldyrev S. V., Havlin S., Leschhorn H., Maass P., Salinger M. A. & Stanley H. E. (1996): “Scaling behaviour in the growth of companies”, Nature 379, 804-806. Lee Y., Amaral L. A. N., Canning D., Meyer M. & Stanley H. E. (1998): “Universal features in the growth dynamics of complex organizations”, Physical Review Letters 81, 3275-3278. Plerou V., Amaral L. A. N., Gopikrishnan P., Meyer M. & Stanley H. E. (1999): “Similarities between the growth dynamics of university research and of competitive economic activities”, Nature 400, 433-437. Bottazzi G., Dosi G., Lippi M., Pammolli F. & Riccaboni M. (2001): “Innovation and corporate growth in the evolution of the drug industry”, International Journal of Industrial Organization 19, 1161-1187. Matia K., Fu Dongfeng, Buldyrev S. V., Pammolli F., Riccaboni M., Stanley H.E. (2004): “Statistical properties of business firms structure and growth”, Europhysics letters 67, 498-503. D. Fu, F. Pammolli, S. V. Buldyrev, M. Riccaboni, K. Matia, K. Yamasaki, and H. E. Stanley, (2005): “The Growth of Business Firms: Theoretical Framework and Empirical Evidence” Proc. Natl. Acad. Sci. 102, 18801. Amaral L. A. N., Buldyrev S. V., Havlin S., Leschhorn H, Maass P., Salinger M. A., Stanley H. E. & Stanley M. H. R. (1997): “Scaling behavior in economics: I, empirical results for company growth”, Journal de Physique I France 7, 621–633. Buldyrev S. V., Amaral L. A. N., Havlin S., Leschhorn H, Maass P., Salinger M. A. , Stanley H. E. & Stanley M. H. R. (1997) “Scaling behavior in economics: II. Modeling of company growth”, Journal de Physique I France 7, 635-650. Sutton J. (2002): “The variance of firm growth rates: The ‘scaling’ puzzle”, Physica A 312, 577–590. De Fabritiis G., Pammolli F., Riccaboni M., (2003): “On size and growth of business firms”, Physica A 324, 38-44. Amaral L. A. N., Buldyrev S. V., Havlin S., Salinger M. A. & Stanley H. E. (1998): “Power Law Scaling for a System of Interacting Units with Complex Internal Structure”, Physical Review Letters 80, 1385-1388. Takayasu H. & Okuyama K. (1998): “Country dependence on company size distributions and a numerical model based on competition and cooperation”, Fractals 6, 67–79. Canning, D., Amaral, L. A. N., Lee, Y., Meyer, M. & Stanley, H. E. (1998): “Scaling the volatility of GDP growth rates”, Economics Letters 60, 335-341. Buldyrev S.V., Dokholyan N.V., Erramilli S., Hong M., Kim J.Y., Malescio G., Stanley H.E. (2003): “Hierarchy in social organization”, Physica A 330, 653–659 Kalecki, M. R. (1945): “On the Gibrat distribution” Econometrica 13, 161-170. Reed, W. J. (2001): “The Pareto, Zipf and other power laws”, Economics Letters 74, 15-19. Stanley, H. E. (1971): Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, Oxford. Cox, D. R. & Miller, H. D. (1968): The Theory of Stochastic Processes, Chapman and Hall, London. Kotz, S., Kozubowski, T. J. & Podgorski, K. (2001): The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance, Birkhauser, Boston. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/15983 |