Grzelak, Lech and Oosterlee, Kees (2009): On The Heston Model with Stochastic Interest Rates.
This is the latest version of this item.
Preview |
PDF
MPRA_paper_24174.pdf Download (603kB) | Preview |
Abstract
We discuss the Heston [Heston-1993] model with stochastic interest rates driven by Hull-White [Hull,White-1996] (HW) or Cox-Ingersoll-Ross [Cox, et al.-1985] (CIR) processes. Two projection techniques to derive affine approximations of the original hybrid models are presented. In these approximations we can prescibe a non-zero correlation structure between all underlying processes. The affine approximate models admit pricing basic derivative products by Fourier techniques [Carr,Madan-1999; Fang,Oosterlee-2008], and can therefore be used for fast calibration of the hybrid model.
Item Type: | MPRA Paper |
---|---|
Original Title: | On The Heston Model with Stochastic Interest Rates |
English Title: | On The Heston Model with Stochastic Interest Rates |
Language: | English |
Keywords: | Heston-Hull-White; Heston-Cox-Ingersoll-Ross; equity-interest rate hybrid products; stochastic volatility; affine jump diffusion processes. |
Subjects: | G - Financial Economics > G1 - General Financial Markets F - International Economics > F3 - International Finance G - Financial Economics > G1 - General Financial Markets > G13 - Contingent Pricing ; Futures Pricing |
Item ID: | 24174 |
Depositing User: | Lech A. Grzelak |
Date Deposited: | 02 Aug 2010 08:31 |
Last Modified: | 26 Sep 2019 17:14 |
References: | [Amstrup, et al.-2006] S. Amstrup, L. MacDonald, B. Manly, Handbook of Capture-Recapture Analysis. Princeton University Press, 2006. [Andersen-2008] L. Andersen, Simple and Efficient Simulation of the Heston Stochastic Volatility Model. J. of Comp. Finance, 11:1-42-2008. [Andreasen-2006] J. Andreasen, Closed Form Pricing of FX Options Under Stochastic Rates and Volatility, Presentation at Global Derivatives Conference 2006, Paris, 9-11 May 2006. [Antonov-2007] A. Antonov, Effective Approximation of FX/EQ Options for the Hybrid models: Heston and Correlated Gaussian Interest Rates. Presentation at MathFinance 2007, available at: http://conference.mathfinance.com/2008/papers/antonov/slides. [Antonov, et al.-2008] A. Antonov, M. Arneguy,N. Audet, Markovian Projection to a Displaced Volatility Heston Model. SSRN working paper, 2008. Available at SSRN: http://ssrn.com/abstract=1106223. [Benhamou, et al.-2008] E. Benhamou, A. Rivoira, A. Gruz, Stochastic Interest Rates for Local Volatility Hybrid Models. Working Paper, March 2008. Available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1107711. [Black,Scholes-1973] F. Black, M. Scholes, The Pricing of Options and Corporate Liabilities. J. Political Economy, 81: 637–654, 1973. [Broadie,Yamamoto-2003] M. Broadie, Y. Yamamoto, Application of the Fast Gauss Transform to Option Pricing. Management Science, 49: 1071-1088, 2003. [Brigo,Mercurio-2007] D. Brigo, F. Mercurio, Interest Rate Models- Theory and Practice: With Smile, Inflation and Credit. Springer Finance, second edition, 2007. [Carr,Madan-1999] P.P. Carr, D.B. Madan, Option Valuation Using the Fast Fourier Transform. J. Comp. Finance, 2:61–73, 1999. [Cox, et al.-1985] J.C. Cox, J.E. Ingersoll, S.A. Ross, A Theory of the Term Structure of Interest Rates. Econometrica 53: 385–407, 1985. [Derman,Kani-1998] E. Derman, I. Kani, Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility. Int. J. Theoretical Appl. Finance, 1: 61–110, 1998. [Dupire-1994] B. Dupire, Pricing with a Smile. Risk, 7: 18-20, 1994. [Duffie, et al.-2000] D. Duffie, J. Pan, K. Singleton, Transform Analysis and Asset Pricing for Affine Jump-Diffusions. Econometrica, 68: 1343–1376, 2000. [Dufresne-2001] D. Dufresne, The Integrated Square-Root Process. Working paper, University of Montreal, 2001. [Fang,Oosterlee-2008] F. Fang, C.W. Oosterlee, A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions. SIAM J. Sci. Comput., 31: 826-848, 2008. [Fisher-1922] R.A. Fisher, On the Interpretation of 2 from Contingency Tables and Calculations of P. J. R. Statist. Soc., 85: 87-94, 1922. [Forsythe, et al.] G. Forsythe, M. Malcolm, C. Moler, Computer Methods for Mathematical Computations. Prentice-Hall, New Jersey, 1977. [Giese-2006] A. Giese, On the Pricing of Auto-Callable Equity Securities in the Presence of Stochastic Volatility and Stochastic Interest Rates. Presentation 2006. [Grzelak, et al.-2009] L.A. Grzelak, C.W. Oosterlee, S.v. Weeren, Extension of Stochastic Volatility Equity Models with Hull-White Interest Rate Process. Quant. Fin., 1469-7696, 2009. [vanHaastrecht, et al.-2009] A. van. Haastrecht, R. Lord,A. Pelser,D. Schrager, Pricing Long- Maturity Equity And FX Derivatives With Stochastic Interest Rates And Stochastic Volatility. Ins.: Mathematics Econ., 45(3), 436–448, 2009. [Heston-1993] S. Heston, A Closed-form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. Rev. Fin. Studies, 6: 327-343, 1993. [Hull,White-1996] J. Hull, A. White, Using Hull-White Interest Rate Trees, J. Derivatives, 4: 26– 36, 1996. [Hunter-2005] C. Hunter, Hybrid Derivatives. The Euromoney Derivatives and Risk Management Handbook, 2005. [J¨ackel-2004] P. J¨ackel, Stochastic Volatility Models: Past, Present and Future. The Best of Wilmott I: Incorporating the Quantitative Finance Rewiev, 379-390, 2004. [Johnson, et al.-1994] N.L. Johnson, N.L. Kotz, N. Balakrishnan, Continuous Univariate Distributions, Volume 2, Second Edition, Wiley, New York, 1994. [Lee-2004] R. Lee, Option Pricing by Transform Methods: Extensions, Unification, and Error Control. J. Comp. Finance, 7(3): 51–86, 2004. [Lewis-2001] A. Lewis, Option Valuation Under Stochastic Volatility. Finance Press, Newport Beach, 2001. [Muskulus, et al.-2007] M. Muskulus, K. in’t Hout,J. Bierkens, A.P.C. van der Ploeg, J. in’t Panhuis, F. Fang, B. Janssens, C.W. Oosterlee, The ING Problem- A problem from Financial Industry; Three papers on the Heston-Hull-White model. Proc. Math. with Industry, Utrecht, Netherlands, 2007. [Kahaner-1989] D. Kahaner, C. Moler, S. Nash, Numerical Methods and Software. Prentice-Hall, New Jersey, 1989. [Kummer-1936] E.E. Kummer, ¨Uber die Hypergeometrische Reihe F(a; b; x). J. reine angew. Math., 15: 39–83, 1936. [Oehlert-1992] G.W. Oehlert, A Note on the Delta Method. Amer. Statistician, 46: 27–29, 1992. [Øksendal-2000] B. Øksendal, Stochastic Differential Equations, Fifth Ed., Springer Verlag, 2000. [Patnaik-1949] P.B. Patnaik, The Non-Central 2 and F-Distributions and Their Applications. Biometrika, 36: 202-232, 1949. [Sch¨obel,Zhu-1999] R. Sch¨obel, J. Zhu, Stochasic Volatility with an Ornstein-Uhlenbeck Process: An extension.Europ. Fin. Review, 3:23–46, 1999. [Vaˇsiˇcek-1977] O.A. Vaˇsiˇcek, An Equilibrium Characterization of the Term Structure. J. Financial Econ., 5: 177–188, 1977. [Zhu-2000] J. Zhu, Modular Pricing of Options. Springer Verlag, Berlin, 2000. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/24174 |
Available Versions of this Item
-
On The Heston Model with Stochastic Interest Rates. (deposited 12 Feb 2010 03:48)
- On The Heston Model with Stochastic Interest Rates. (deposited 02 Aug 2010 08:31) [Currently Displayed]