Baskaran, Thushyanthan and Blöchl, Florian and Brück, Tilmann and Theis, Fabian J. (2010): The Heckscher-Ohlin Model and the Network Structure of International Trade. Published in: International Review of Economics and Finance , Vol. 20, No. 2 (2011): pp. 135-145.
Preview |
PDF
MPRA_paper_30187.pdf Download (306kB) | Preview |
Abstract
This paper estimates for 28 product groups a characteristic parameter that reflects the topological structure of its trading network. Using these estimates, it then describes how the structure of international trade has evolved during the 1980-2000 period. Thereafter, it demonstrates the importance of networks in international trade by explicitly accounting for their scaling properties when testing the prediction of the Heckscher-Ohlin model that factor endowment differentials determine bilateral trade flows. The results suggest that differences in factor endowments increase bilateral trade in goods that are traded in "dispersed" networks. For goods that are traded in "concentrated" networks, factor endowment differentials are less important.
Item Type: | MPRA Paper |
---|---|
Original Title: | The Heckscher-Ohlin Model and the Network Structure of International Trade |
Language: | English |
Keywords: | Networks, international trade, gravity model |
Subjects: | F - International Economics > F1 - Trade > F15 - Economic Integration L - Industrial Organization > L1 - Market Structure, Firm Strategy, and Market Performance > L14 - Transactional Relationships ; Contracts and Reputation ; Networks F - International Economics > F1 - Trade > F10 - General |
Item ID: | 30187 |
Depositing User: | Thushyanthan Baskaran |
Date Deposited: | 18 Apr 2011 11:35 |
Last Modified: | 26 Sep 2019 18:24 |
References: | Albert, R. and A.-L. Barabasi (2002). Statistical mechanics of complex networks. Reviews of Modern Physics 74 (1), 47-97. Amaral, L. A. N., A. Scala, M. Barthelemy, and H. E. Stanley (2000). Classes of smallworld networks. Proceedings of the National Academy of Sciences of the United States of America 97 (21), 11149-11152. Anderson, J. E. (1979). A theoretical foundation for the gravity equation. American Economic Review 69 (1), 106-16. March. Arthur, W. B. (1999). Complexity and the economy. Science 284, 107-109. Barabasi, A.-L. and R. Albert (1999). Emergence of scaling in random networks. Science 286, 509-512. Baskaran, T. and T. Br�ück (2005). Scale-free networks in international trade. DIW Discussion Papers 493. Blöchl, F., F. J. Theis, F. Vega-Redondo, and E. O. Fisher (2010). Which Sectors of a Modern Economy are Most Central? CESifo Working Paper Series No. 3175. Bowen, H., E. Leamer, and L. Sveikauskas (1987). Multicountry, multifactor tests of the factor abundance theory. American Economic Review, 77, 791-809. Clauset, A., C. Shalizi, and M. Newman (2009). Power-law distributions in empirical data. SIAM review 51 (4), 661-703. Davis, D. R., D. E. Weinstein, S. C. Bradford, and K. Shimpo (1997). Using international and Japanese regional data to determine when the factor abundance theory of trade works. American Economic Review 87 (3), 421-446. Erdös, P. and A. Renyi (1959). On random graphs. i. Publicationes Mathematicae Debrecen 6, 290-297. Evenett, S. and W. Keller (2002). On theories explaining the success of the gravity equation. Journal of Political Economy 110, 281-316. Fagiolo, G., J. Reyes, and S. Schiavo (2010). The evolution of the world trade web: a weighted-network analysis. Journal of Evolutionary Economics 20 (4), 479-514. Garlaschelli, D. and M. I. Loredo (2005). Structure and evolution of the world trade network. Physica A 355 (1), 138-144. Goldstein, M. L., S. A. Morris, and G. G. Yen (2004). Problems with tting to the powerlaw distribution. The European Physical Journal B 41 (2), 255-258. Hakura, D. S. (2001). Why does HOV fail? the role of technological dierences within the EC. Journal of International Economics 54 (2), 361-382. Hidalgo, C. and R. Hausmann (2009). The building blocks of economic complexity. Proceedings of the National Academy of Sciences 106 (26), 10570-10575. Hidalgo, C. A., B. Klinger, R. Barabasi, and R. Hausmann (2007). The product space conditions the development of nations. Science 317, 482-487. Kali, R. and J. Reyes (2007). The architecture of globalization: A network approach to international trade. Journal of International Business Studies 38 (4), 595-620. Leontief, W. (1953). Domestic production and foreign trade: The American capital position reexamined. Proceedings of the American Philosophical Society 97, 332-349. Maskus, K. E. (1985). A test of the Hechscher-Ohlin-Vanek Theorem: The Leontief commonplace. Journal of International Economics 19, 201-212. Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review 45 (2), 167- 256. Nicholls, P. T. (1987). Estimation of zipf parameters. Journal of the American Society for Information Science 38 (6), 442-445. Nishioka, S. (2006). An explanation of OECD factor trade with knowledge capital and the hov model. Mimeo (University of Colorado at Boulder). Rauch, J. E. (1999). Networks versus markets in international trade. Journal of International Economics 48 (1), 7-35. June. Schweitzer, F., G. Fagiolo, D. Sornette, F. Vega-Redondo, A. Vespignani, and D. R. White (2009, July). Economic networks: the new challenges. Science 325 (5939), 422-425. Serrano, M. A. and M. Bogu~na (2003). Topology of the world trade web. Phys. Rev. E 68 (1), 015101. Strogatz, S. H. (2001). Exploring complex networks. Nature 410, 268-276. Trefler, D. (1995). The case of the missing trade and other mysteries. American Economic Review 85, 1029-1046. Vega-Redondo, F. (2007). Complex Social Networks. Cambridge University Press. Watts, D. J. and S. H. Strogatz (1998). Collective dynamics of 'small-world' networks. Nature 393, 440-442. Wilhite, A. (2001). Bilateral trade and 'small-world' networks. Computational Economics 18, 49-64. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/30187 |