Wu, Haoyang (2011): Subgame perfect implementation: A new result.
Preview |
PDF
MPRA_paper_30286.pdf Download (554kB) | Preview |
Abstract
This paper concerns what will happen if quantum mechanics is concerned in subgame perfect implementation. The main result is: When additional conditions are satisfied, the traditional characterization on subgame perfect implementation shall be amended by virtue of a quantum stage mechanism. Furthermore, by using an algorithmic stage mechanism, this amendment holds in the macro world too.
Item Type: | MPRA Paper |
---|---|
Original Title: | Subgame perfect implementation: A new result |
Language: | English |
Keywords: | Mechanism design; Subgame perfect implementation; Quantum game theory. |
Subjects: | D - Microeconomics > D7 - Analysis of Collective Decision-Making > D71 - Social Choice ; Clubs ; Committees ; Associations |
Item ID: | 30286 |
Depositing User: | Haoyang Wu |
Date Deposited: | 18 Apr 2011 12:44 |
Last Modified: | 26 Sep 2019 23:49 |
References: | 1. E. Maskin, Nash equilibrium and welfare optimality, \emph{Rev. Econom. Stud.} \textbf{66} (1999) 23-38. 2. J. Moore and R. Repullo, Subgame perfect implementation. \emph{Econometrica}, \textbf{56} (1988) 1191-1220. 3. D. Abreu and A. Sen, Subgame perfect implementation: a necessary and almost sufficient condition. \emph{Journal of Economic Theory}, \textbf{50} (1990) 285-299. 4. H. Vartiainen, Subgame perfect implementation: a full characterization. \emph{Journal of Economic Theory}, \textbf{133} (2007) 111-126. 5. H. Wu, Quantum mechanism helps agents combat ``bad'' social choice rules. \emph{International Journal of Quantum Information}, 2010 (accepted). \\ http://arxiv.org/abs/1002.4294 6. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe and J.L. O'Brien, Quantum computers, \emph{Nature}, \textbf{464} (2010) 45-53. 7. H. Wu, On amending the sufficient conditions for Nash implementation. \emph{Theoretical Computer Science}, 2011 (submitted).\\ http://arxiv.org/abs/1004.5327 8. H. Wu, Two-agent Nash implementation: A new result. \emph{Games and Economic Behaviour}, 2011 (submitted).\\ http://arxiv.org/abs/1005.2135 9. H. Wu, Quantum and algorithmic Bayesian mechanisms.\\ http://arxiv.org/abs/1104.0471 10. R. Serrano, The theory of implementation of social choice rules, \emph{SIAM Review} \textbf{46} (2004) 377-414. 11. A.P. Flitney and L.C.L. Hollenberg, Nash equilibria in quantum games with generalized two-parameter strategies, \emph{Phys. Lett. A} \textbf{363} (2007) 381-388. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/30286 |