Barnett, William A. and Kalonda-Kanyama, Isaac (2012): Time-varying parameters in the almost ideal demand system and the Rotterdam model: will the best specification please stand up?
Preview |
PDF
MPRA_paper_36513.pdf Download (399kB) | Preview |
Abstract
We use Monte Carlo simulations to assess the ability of the Rotterdam model and the three versions of the almost ideal demand system (AIDS) to recover the time-varying elasticities of a true demand system and to satisfy theoretical regularity. We find that the Rotterdam model performs better at recovering the signs of all the time-varying elasticities. More importantly, the RM has the ability to track the paths of time-varying income elasticities, even when the true values are very high. The linear-approximate AIDS, not only performs poorly at recovering the time-varying elasticities but also badly approximates the nonlinear AIDS.
Item Type: | MPRA Paper |
---|---|
Original Title: | Time-varying parameters in the almost ideal demand system and the Rotterdam model: will the best specification please stand up? |
Language: | English |
Keywords: | almost ideal demand system, Rotterdam model, structural time series models, Monte Carlo experiment, theoretical regularity |
Subjects: | C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C51 - Model Construction and Estimation D - Microeconomics > D1 - Household Behavior and Family Economics > D12 - Consumer Economics: Empirical Analysis C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection |
Item ID: | 36513 |
Depositing User: | William A. Barnett |
Date Deposited: | 08 Feb 2012 04:03 |
Last Modified: | 01 Oct 2019 19:27 |
References: | Alessie, R. and Kapteyn, A. (1991). Habit formation, interdependent preferences and demographic effects in the almost ideal demand system. The Economic Journal, 101(406):404-419. Alston, J. M. and Chalfant, J. A. (1991). Can we take the con out of the meat demand studies? Western Journal of Agricultural Economics, 16(1):36-48. Alston, J. M. and Chalfant, J. A. (1993). The silence of the lambdas: A test of the almost ideal and Rotterdam models. American Journal of AgriculturalEconomics, 75(2):304-313. Alston, J. M., Foster, K. A., and Green, R. D. (1994). Estimating elasticities with the linear approximate almost ideal demand system: Some Monte Carlo results. The Review of Economics and Statistics, 76(2):351-356. Barnett, W. A. (1977). Recursive subaggregation and generalized hypocycloidal demand model. Econometrica, 45(5):1117-1136. Barnett, W. A. (1979a). The joint allocation of leisure and good expenditure. Econometrica, 47(3):539-563. Barnett, W. A. (1979b). Theoretical foundations for the Rotterdam model. The Review of Economic Studies, 46(1):109-130. Barnett, W. A. and Choi, S. (1989). A Monte Carlo study of tests of blockwise weak separability. Journal of Business and Economic Statistics, 7(3):363-377. Barnett, W. A. and Seck, O. (2008). Rotterdam model versus Almost Ideal Demand System: Will the best specification please stand up? Journal of Applied Econometrics, 23:795-824. Barnett, W. A. and Serletis, A. (2008). Consumer preferences and demand systems. Journal of Econometrics, 147:210-224. Barten, A. P. (1964). Consumer demand functions under conditions of almost additive preferences. Econometrica, 32(1/2):1-38. Barten, A. P. (1968). Estimating demand systems. Econometrica, 36(2):213-251. Barten, A. P. (1969). Maximum likelihood estimation of a complete system of demand equations. European Economic Review, 1:7-73. Barten, A. P. (1977). The system of consumer demand function approach: A review. Econometrica, 45(1):23-50. Barten, A. P. (1993). Consumer allocation models: Choice of functional form. Empirical Economics, 18:129-158. Basmann, R. L. (1954-1955). A note on Mr. Ichimura's definition of related good. The Review of Economic Studies, 22(1):67-69. Basmann, R. L. (1956). A theory of demand with variable consumer preferences. Econometrica, 24(1):47-58. Basmann, R. L. (1972). Variable consumer preferences: Postscript. In Ekelund, R., Furuboth, E., and Gramm, W. P., editors, The Evolution of modern demand theory. Lexington Books, Lexington. Basmann, R. L. (1985). A theory of serial correlation of stochastic taste changers in direct utility functions. Econometric Theory, 1(2):192-210. Basmann, R. L., Hayes, K., McAleer, M., McCarthy, I., and Slottje, D. J.(2009). The GFT utility function. In Slottje, D. J., editor, Quantifying consumer preferences, Contributions to Economic Analysis, Emerald Group Publishing, pp. 119-148. Blackorby, C., Primont, D., and Russell, R. R. (2007). The Morishima gross elasticity of substitution. Journal of Productivity Analysis, 28:203-208. Blackorby, C. and Russell, R. R. (1975). The partial elasticity of substitution. Department of Economics, University of California, San Diego. Blackorby, C. and Russell, R. R. (1981). The Morishima elasticity of substitution: Symmetry, constancy, separability, and its relationship to the Hicks-Allen elasticities. Review of Economic Studies, 48(1):147-158. Blackorby, C. and Russell, R. R. (1989). Will the real elasticity of substitution please stand up? (a comparison of the Allen/Uzawa and Morishima elasticities). The American Economic Review, 79(4):882-888. Brester, G. W. and Wohlgenant, M. K. (1991). Estimating interrelated demands for meats using new measures for ground and table cut beef. American Journal of Agricultural Economics, 73(4):1182-1194. Brown, M. G. and Lee, J.-Y. (2002). Restriction on the effects of preference variables in the Rotterdam model. Journal of Agricultural and Applied Economics, 34(1):17-26. Bryon, R. P. (1984). On the flexibility of the Rotterdam model. European Economic Review, 24:273-283. Chavas, J. P. (1983). Structural change in the demand of meat. American Journal of Agricultural Economics, 65(1):148-153. Christensen, L. R., Jorgenson, D. W., and Lau, L. J. (1975). Transcendental logarithmic utility functions. American Economic Review, 65(3):367-383. Deaton, A. and Muellbauer, J. (1980a). An almost ideal demand system. The American Economic Review, 70(3):312-326. Deaton, A. and Muellbauer, J. (1980b). Economics and consumer behavior. Cambridge University Press. Diewert, W. E. (1971). An application of the Shephard duality theorem: A generalized Leontief production function. The Journal of Political Economy, 79(3):461-507. Doan, T. A. (2010a). Practical issues with state-space models with mixed stationary and non-stationary dynamics. Technical paper no. 2010-1, Estima. Doan, T. A. (2010b). Rats handbook for state-space models. Technical report. Doan, T. A. (2011). State space methods in rats. Journal of Statistical Software, 41(9):1-16. Doran, H. E. (1992). Constraining Kalman filter and smoothing estimates to satisfy time-varying restrictions. The Review of Economics and Statistics,74(3):568-572. Doran, H. E. and Rambaldi, A. N. (1997). Applying linear time-varying constraints to econometric models: With an application to demand systems. Journal of Econometrics, 79:83-95. Eales, J. S. and Unnevehr, L. J. (1988). Demand for beef and chicken products: Separability and structural change. American Journal of Agricultural Economics, 70(3):521-532. Estima (2007a). RATS Reference Manual. Estima (2007b). RATS User Manual. Gaertner, W. (1974). A dynamic model of interdependent consumer behavior. Journal of Economics, 34(3-4):327-344. Green, R. and Alston, J. M. (1990). Elasticities in the AIDS model. American Journal of Agricultural Economics, 72(2):442-445. Green, R. and Alston, J. M. (1991). Elasticities in AIDS models: A clarification and extension. American Journal of Agricultural Economics, 73(3):874-875. Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman filter. Cambridge University Press, Cambridge. Ichimura, S. (1950). A critical note on the definition of related goods. The Review of Economic Studies, 18(3):179-183. Kapteyn, A., Van de Geer, S., Van de Stadt, H., and Wansbeek, T. (1997). Interdependent preferences: An econometric analysis. Journal of Applied Econometrics, 12(6):665-686. Karni, E. and Schmeidler, D. (1990). Fixed preferences and changing tastes. The American Economic Review, 80(2):262-267. Koopman, S. J. (1997). Exact initial Kalman filtering and smoothing for nonstationary time series models. Journal of the American Statistical Association, 92(440):1630-1638. Leybourne, S. J. (1993). Empirical performance of the AIDS model: constant-coefficient versus time-varying-coefficient approaches. Applied Economics, 25:453-463. Mazzocchi, M. (2003). Time-varying coefficient in the almost ideal demand system: an empirical appraisal. European Review of Agricultural Economics, 30(2):241-270. Morishima, M. (1967). A few suggestions on the theory of elasticity. Keizai Hyoron(Economic Review), 16:149-150. Moschini, G. and Meilke, K. D. (1989). Modeling the pattern of structural change in U.S. meat demand. American Journal of Agricultural Economics, 71(2):253-261. Pollak, R. A. (1976). Interdependence preferences. The American Economic Review, 66(3):309-320. Pollak, R. A. (1978). Endogenous tastes in demand and welfare analysis. The American Economic Review, 68(2):374-379. Sobel, J. (2005). Interdependent preferences and reciprocity. Journal of Economic Literature, 43(2):392-436. Theil, H. (1965). The information approach to demand analysis. Econometrica, 33(1):67-87. Theil, H. (1971). Principles of Econometrics. John Wiley & Sons, New York, New York. Theil, H. (1975a). Theory and measurement of consumer demand, volume 1. North-Holland, Amsterdam. Theil, H. (1975b). Theory and measurement of consumer demand, volume 2. North-Holland, Amsterdam. Theil, H. (1980a). System-wide approach to microeconomics. University of Chicago Press, Chicago. Theil, H. (1980b). System-wide exploration in international economics. Input-output analysis and marketing research. North-Holland Publishing Company, New York. Tintner, G. (1952). Complementarity and shifts in demand. Metroeconomica, 4(1):1-4. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/36513 |
Available Versions of this Item
- Time-varying parameters in the almost ideal demand system and the Rotterdam model: will the best specification please stand up? (deposited 08 Feb 2012 04:03) [Currently Displayed]