Leduc, Guillaume (2012): Arbitrarily Fast CRR Schemes.
Preview |
PDF
MPRA_paper_42094.pdf Download (159kB) | Preview |
Abstract
We introduce a method for the approximation of a lognormal stock price process by a Cox, Ross and Rubinstein (CRR) type of binomial scheme, which allows to reach arbitrary speed of convergence of order O(n^{-(N/2)}), for any integer N>0.
Item Type: | MPRA Paper |
---|---|
Original Title: | Arbitrarily Fast CRR Schemes |
Language: | English |
Keywords: | European options, binomial scheme error, Black-Scholes |
Subjects: | G - Financial Economics > G1 - General Financial Markets > G13 - Contingent Pricing ; Futures Pricing |
Item ID: | 42094 |
Depositing User: | Guillaume Leduc |
Date Deposited: | 21 Oct 2012 05:27 |
Last Modified: | 01 Oct 2019 04:57 |
References: | Chang, L.B. and Palmer, K., 2007. Smooth convergence in the binomial model, Finance and Stochastics 11 no. 1, 91--105. Diener, F. and Diener, M., 2004. Asymptotics of the price oscillations of a European call option in a tree model, Mathematical finance 14 no. 2, 271--293. Diener, F. and Diener, M., 2005. Higher-order terms for the de Moivre-Laplace theorem, Contemporary Mathematics 373 191--206. Joshi, M.S., 2010. Achieving higher order convergence for the prices of European options in binomial trees, Mathematical Finance 20 no. 1, 89--103. R. Korn and S. Müller, 2012. The optimal-drift model: an accelerated binomial scheme, Finance and Stochastics, 1--26. Walsh, J.B., 2003. The rate of convergence of the binomial tree scheme, Finance and Stochastics 7 no. 3, 337--361. Xiao, X., 2010. Improving speed of convergence for the prices of European options in binomial trees with even numbers of steps, Applied Mathematics and Computation 216, no. 9, 2659--2670. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/42094 |