Bandi, Federico and Moloche, Guillermo (2008): On the functional estimation of multivariate diffusion processes.
Preview |
PDF
MPRA_paper_43681.pdf Download (367kB) | Preview |
Abstract
We propose a fully nonparametric estimation theory for the drift vector and the diffusion matrix of multivariate diffusion processes. The estimators are sample analogues to infinitesimal conditional expectations constructed as Nadaraya-Watson kernel averages. Minimal assumptions are imposed on the statistical properties of the multivariate system to obtain limiting results. Harris recurrence is all that we require to show strong consistency and asymptotic (mixed) normality of the functional estimates. Hence, the estimation method and asymptotic theory apply to both stationary and nonstationary multivariate diffusion processes of the recurrent type.
Item Type: | MPRA Paper |
---|---|
Original Title: | On the functional estimation of multivariate diffusion processes |
Language: | English |
Keywords: | Diffusion processes, nonparametric estimation |
Subjects: | C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C32 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C14 - Semiparametric and Nonparametric Methods: General C - Mathematical and Quantitative Methods > C0 - General > C01 - Econometrics |
Item ID: | 43681 |
Depositing User: | Guillermo Moloche |
Date Deposited: | 09 Jan 2013 21:10 |
Last Modified: | 30 Sep 2019 16:17 |
References: | Aït-Sahalia, Y., 2008. Closed-form likelihood expansions for multivariate diffusions. Annals of Statistics 36, 906-937. Aït-Sahalia, Y., L.P. Hansen, and J. Scheinkman, 2008. Operator methods for continuous-time Markov processes. In Handbook of Financial Econometrics (Y. Aït-Sahalia and L. P. Hansen, eds.) Elsevier, forthcoming. Azéma, J., M. Kaplan-Du�o, and D. Revuz, 1966. Mesure invariante sur les classes récurrentes des processus de Markov. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 8, 157-181. Bandi, F.M. and P.C.B. Phillips, 2003. Fully nonparametric estimation of scalar diffusion models. Econometrica 71, 241-283. Bandi, F.M. and P.C.B. Phillips, 2008. Nonstationary continuous-time models. In Handbook of Financial Econometrics (Y. Aït-Sahalia and L. P. Hansen, eds.) Elsevier, forthcoming. Bickel, P.J. and M. Rosenblatt, 1973. On some global measures of the deviations of density function estimates. Annals of Statistics 1, 1071-1095. Bosq, D., 1998. Nonparametric Statistics for Stochastic Processes. Springer-Verlag. Boudoukh, J., M. Richardson, R. Stanton, and R.F. Whitelaw, 2003. The stochastic behavior of interest rates: implications from a nonlinear, continuous-time, multifactor model. Working paper. Brugière, P., 1991. Estimation de la variance d'un processus de diffusion dans le cas multidimensionnel. C. R. Acad. Sci. Paris Série I 312, 999-1004. Brugière, P., 1993. Théorème de limite centrale pour un estimateur nonparamétrique de la variance d'un processus de diffusion multidimensionnelle. Ann. Inst. Henri Poincaré 29, 357-389. Cai, Z. and Y. Hong, 2003. Nonparametric methods in continuous-time finance: A selective review. In Recent Advances and Trends in Nonparametric Statistics (M. G. Akritas and D. N. Politis, eds.) Elsevier, 283-302. Chen, X. and L.P. Hansen, 2002. Dependence properties of multivariate reversible diffusions. Working paper. Darling, D.A. and M. Kac, 1957. On occupation times for Markoff processes. Transactions of the American Mathematical Society 84, 444-458. Fan, J., 1992. Design-adaptive nonparametric regression. Journal of the American Statistical Association 87, 998-1004. Fan, J., 2005. A selective overview of nonparametric methods in financial econometrics. Statistical Science 20, 317-337. Fan, J. and C. Zhang, 2003. A re-examination of diffusion estimators with applications to financial model validation. Journal of the American Statistical Association 98, 118-134. Fan, Y., 1994. Testing the goodness of fit of a parametric density function by kernel method. Econometric Theory 10, 316-356. Florens-Zmirou, D., 1993. On estimating the diffusion coefficient from discrete observations. Journal of Applied Probability 30, 790-804. Gallant, R. and G. Tauchen, 2008. Simulated methods and indirect inference for continuous-time models. In Handbook of Financial Econometrics (Y. Aït-Sahalia and L.P. Hansen, eds.) Elsevier, forthcoming. Geman, D. and J. Horowitz, 1980. Occupation densities. Annals of Probability 8, 1-67. Genon-Catalot, V. and J. Jacod, 1993. On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Ann. Inst. H. Poincaré Probab. Statist. 29, 119-151. Guerre, E., 2007. Design-adaptive point-wise nonparametric regression estimation for recurrent Markov time series. Working paper. Jiang, G.J. and J. Knight, 1999. Finite sample comparison of alternative estimators of Itô diffusion processes: a Monte-Carlo study. Journal of Computational Finance 2, 5-38. Johannes, M. and N. Polson, 2008. MCMC methods for financial econometrics. In Handbook of Financial Econometrics (Y. Aït-Sahalia and L.P. Hansen, eds.) Elsevier, forthcoming. Kallianpur, G. and H. Robbins, 1953. Ergodic properties of the Brownian motion Process. Proc. Nat. Acad. 39, 525-533. Karatzas, I. and S. E. Shreve, 1988. Brownian Motion and Stochastic Calculus. Springer-Verlag. Karlsen, H.A. and D. Tjøstheim, 2001. Nonparametric estimation in null recurrent time series. Annals of Statistics 29, 372-416. Karlsen, H.A., T. Myklebust, and D. Tjøstheim, 2007. Nonparametric estimation in a non-linear cointegrating type model. Annals of Statistics 35, 252-299. Kasahara, Y., 1975. Spectral theory of generalized second order differential operators and its applications to Markov processes. Japan J. Math. 1, 67-84. Kaspi, H. and A. Mandelbaum, 1994. On Harris recurrence in continuous time. Mathematics of Operation Research 19, 211-222. Kliemann, W., 1983. Transience, recurrence and invariant measures for diffusions. In Non-linear Stochastic Problems (R.S. Bucy and M.F. Moura, eds.) Reidel Publishing Company, 437-454. Magnus, J. R. and H. Neudecker, 1988. Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley. Masry, E., 1996a. Multivariate local polynomial regression for time series: uniform strong consistency and rates. Journal of Time Series Analysis 17, 571-599. Masry, E., 1996b. Multivariate regression estimation: local polynomial fitting for time series. Journal of Stochastic Processes and their Applications 65, 81-101. McKean, H. P., 1969. Stochastic Integrals. Springer-Verlag. Meyn, S. P. and R. L. Tweedie, 1993. Stability of Markovian processes II. Continuous-time processes and sampled chains. Advances in Applied Probability 25, 487-517. Moloche, G., 2004. Local nonparametric estimation of scalar diffusions. Working paper. Moloche, G., 2004b. Kernel regression for non-stationary Harris recurrent processes. Working paper. Pagan, A. and A. Ullah, 1999. Nonparametric Econometrics. Cambridge University Press. Park, J., 2006. Spatial analysis of time series. Working paper. Phillips, P.C.B. and J. Park, 1998. Nonstationary density estimation and kernel autoregression. Working paper. Revuz, D. and M. Yor, 1998. Continuous Martingales and Brownian Motion, Springer-Verlag. Stanton, R., 1997. A nonparametric model of term structure dynamics and the market price of interest rate risk. Journal of Finance 52, 1973-2002. Wang, Q., and P.C.B. Phillips, 2008. Structural nonparametric cointegrating regression. Working paper. Wang, Q., and P.C.B. Phillips, 2009. Asymptotic theory for local time density estimation and nonparametric cointegrating regression. Econometric Theory, forthcoming. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/43681 |