de Rigo, Daniele and Corti, Paolo and Caudullo, Giovanni and McInerney, Daniel and Di Leo, Margherita and San-Miguel-Ayanz, Jesús (2013): Toward open science at the European scale: geospatial semantic array programming for integrated environmental modelling. Forthcoming in: Geophysical Research Abstracts , Vol. 15, (2013)
This is the latest version of this item.
Preview |
PDF
MPRA_paper_45958.pdf Download (355kB) | Preview |
Abstract
Excerpt:
Interfacing science and policy raises challenging issues when large spatial-scale (regional, continental, global) environmental problems need transdisciplinary integration within a context of modelling complexity and multiple sources of uncertainty. This is characteristic of science-based support for environmental policy at European scale, and key aspects have also long been investigated by European Commission transnational research. Approaches (either of computational science or of policy-making) suitable at a given domain-specific scale may not be appropriate for wide-scale transdisciplinary modelling for environment (WSTMe) and corresponding policy-making. In WSTMe, the characteristic heterogeneity of available spatial information and complexity of the required data-transformation modelling (D-TM) appeal for a paradigm shift in how computational science supports such peculiarly extensive integration processes. In particular, emerging wide-scale integration requirements of typical currently available domain-specific modelling strategies may include increased robustness and scalability along with enhanced transparency and reproducibility. This challenging shift toward open data and reproducible research (open science) is also strongly suggested by the potential - sometimes neglected - huge impact of cascading effects of errors within the impressively growing interconnection among domain-specific computational models and frameworks. Concise array-based mathematical formulation and implementation (with array programming tools) have proved helpful in supporting and mitigating the complexity of WSTMe when complemented with generalized modularization and terse array-oriented semantic constraints. This defines the paradigm of Semantic Array Programming (SemAP) where semantic transparency also implies free software use (although black-boxes - e.g. legacy code - might easily be semantically interfaced). A new approach for WSTMe has emerged by formalizing unorganized best practices and experience-driven informal patterns. The approach introduces a lightweight (non-intrusive) integration of SemAP and geospatial tools - called Geospatial Semantic Array Programming (GeoSemAP). GeoSemAP exploits the joint semantics provided by SemAP and geospatial tools to split a complex D-TM into logical blocks which are easier to check by means of mathematical array-based and geospatial constraints. Those constraints take the form of precondition, invariant and postcondition semantic checks. This way, even complex WSTMe may be described as the composition of simpler GeoSemAP blocks. GeoSemAP allows intermediate data and information layers to be more easily and formally semantically described so as to increase fault-tolerance, transparency and reproducibility of WSTMe. This might also help to better communicate part of the policy-relevant knowledge, often diffcult to transfer from technical WSTMe to the science-policy interface. [...]
Item Type: | MPRA Paper |
---|---|
Original Title: | Toward open science at the European scale: geospatial semantic array programming for integrated environmental modelling |
Language: | English |
Keywords: | Open Science; Europe; European Forest Data Centre; EFDAC; free software; free scientific software; forest information system; geospatial; geospatial tools; semantic array programming; geospatial semantic array programming; data-transformation modelling; reproducible research; environmental modelling |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C45 - Neural Networks and Related Topics Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q51 - Valuation of Environmental Effects Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q54 - Climate ; Natural Disasters and Their Management ; Global Warming Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q57 - Ecological Economics: Ecosystem Services ; Biodiversity Conservation ; Bioeconomics ; Industrial Ecology C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C44 - Operations Research ; Statistical Decision Theory C - Mathematical and Quantitative Methods > C0 - General > C02 - Mathematical Methods C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C31 - Cross-Sectional Models ; Spatial Models ; Treatment Effect Models ; Quantile Regressions ; Social Interaction Models L - Industrial Organization > L8 - Industry Studies: Services > L86 - Information and Internet Services ; Computer Software |
Item ID: | 45958 |
Depositing User: | Daniele de Rigo |
Date Deposited: | 08 Apr 2013 12:56 |
Last Modified: | 28 Sep 2019 04:53 |
References: | [1] de Rigo, D., (exp.) 2013. Behind the horizon of reproducible integrated environmental modelling at European scale: ethics and practice of scientific knowledge freedom. F1000 Research. Submitted [2] Funtowicz, S. O., Ravetz, J. R., 1994. Uncertainty, complexity and post-normal science. Environmental Toxicology and Chemistry 13 (12), 1881-1885. http://dx.doi.org/10.1002/etc.5620131203 [3] Funtowicz, S. O., Ravetz, J. R., 1994. The worth of a songbird: ecological economics as a postnormal science. Ecological Economics 10 (3), 197207. http://dx.doi.org/10.1016/0921-8009(94)90108-2 [4] Funtowicz, S. O., Ravetz, J. R., 2003. Post-normal science. International Society for Ecological Economics, Internet Encyclopaedia of Ecological Economics [5] Ravetz, J., 2004. The post-normal science of precaution. Futures 36 (3), 347-357. http://dx.doi.org/10.1016/S00163287(03)00160-5 [6] van der Sluijs, J. P., 2012. Uncertainty and dissent in climate risk assessment: A Post-Normal perspective. Nature and Culture 7 (2), 174-195. http://dx.doi.org/10.3167/nc.2012.070204 [7] Ulieru, M., Doursat, R., 2011. Emergent engineering: a radical paradigm shift. International Journal of Autonomous and Adaptive Communications Systems 4 (1), 39-60. http://dx.doi.org/10.1504/IJAACS.2011.037748 [8] Turner, M. G., Dale, V. H., Gardner, R. H., 1989. Predicting across scales: Theory development and testing. Landscape Ecology 3 (3), 245-252. http://dx.doi.org/10.1007/BF00131542 [9] Zhang, X., Drake, N. A., Wainwright, J., 2004. Scaling issues in environmental modelling. In: Wainwright, J., Mulligan, M. (Eds.), Environmental modelling : finding simplicity in complexity. Wiley. ISBN: 9780471496182 [10] Bankes, S. C., 2002. Tools and techniques for developing policies for complex and uncertain systems. Proc Natl Acad Sci U S A 99 (Suppl 3), 7263-7266. http://dx.doi.org/10.1073/pnas.092081399 [11] Peng, R. D., 2011. Reproducible research in computational science. Science 334 (6060), 1226-1227. http://dx.doi.org/10.1126/science.1213847 [12] Morin, A., Urban, J., Adams, P. D., Foster, I., Sali, A., Baker, D., Sliz, P., 2012. Shining light into black boxes. Science 336 (6078), 159-160. http://dx.doi.org/10.1126/science.1218263 [13] Nature, 2011. Devil in the details. Nature 470 (7334), 305-306. http://dx.doi.org/10.1038/470305b [14] Stodden, V., 2012. Reproducible research: Tools and strategies for scientific computing. Computing in Science and Engineering 14, 11-12. http://dx.doi.org/10.1109/MCSE.2012.82 [15] de Rigo, D., Corti, P., Caudullo, G., McInerney, D., Di Leo, M., San-Miguel-Ayanz, J., (exp.) 2013. Supporting Environmental Modelling and Science-Policy Interface at European Scale with Geospatial Semantic Array Programming. In prep. [16] Molloy, J. C., 2011. The open knowledge foundation: Open data means better science. PLoS Biology 9 (12), e1001195+. http://dx.doi.org/10.1371/journal.pbio.1001195 [17] de Rigo, D., 2013. Software Uncertainty in Integrated Environmental Modelling: the role of Semantics and Open Science. Geophys Res Abstr 15, 13292+. http://dx.doi.org/10.6084/m9.figshare.155701 [18] Cerf, V. G., 2012. Where is the science in computer science? Commun. ACM 55 (10), 5. http://dx.doi.org/10.1145/2347736.2347737 [19] Wilson, G., 2006. Where’s the real bottleneck in scientific computing? American Scientist 94 (1), 5+. http://dx.doi.org/10.1511/2006.1.5 [20] de Rigo, D., 2012. Integrated Natural Resources Modelling and Management: minimal redefinition of a known challenge for environmental modelling. Excerpt from the Call for a shared research agenda toward scientific knowledge freedom, Maieutike Research Initiative. http://www.citeulike.org/groupfunc/15400/home [21] Stallman, R. M., 2005. Free community science and the free development of science. PLoS Med 2 (2), e47+. http://dx.doi.org/10.1371/journal.pmed.0020047 [22] Stallman, R. M., 2009. Viewpoint: Why ”open source” misses the point of free software. Communications of the ACM 52 (6), 31-33. http://dx.doi.org/10.1145/1516046.1516058 (free access version: http://www.gnu.org/philosophy/open-source-misses-the-point.html ) [23] Rodriguez-Aseretto, D., Di Leo, M., de Rigo, D., Corti, P., McInerney, D., Camia, A., San Miguel-Ayanz, J., 2013. Free and Open Source Software underpinning the European Forest Data Centre. Geophys Res Abstr 15, 12101+. http://dx.doi.org/10.6084/m9.figshare.155700 [24] Giovando, C., Whitmore, C., Camia, A., San-Miguel-Ayanz, J., 2010. Enhancing the European Forest Fire Information System (EFFIS) with open source software. In: FOSS4G 2010. http://2010. foss4g.org/presentations_show.php?id=3693 [25] Corti, P., San-Miguel-Ayanz, J., Camia, A., McInerney, D., Boca, R., Di Leo, M., 2012. Fire news management in the context of the European Forest Fire Information System (EFFIS). In: proceedings of ”Quinta conferenza italiana sul software geografico e sui dati geografici liberi” (GFOSS DAY 2012). http://files.figshare.com/229492/Fire_news_management_in_the_context_of_EFFIS.pdf [26] McInerney, D., Bastin, L., Diaz, L., Figueiredo, C., Barredo, J. I., San-Miguel-Ayanz, J., 2012. Developing a forest data portal to support Multi-Scale decision making. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5 (6), 1-8. http://dx.doi.org/10.1109/JSTARS.2012.2194136 [27] Morin, A., Urban, J., Adams, P. D., Foster, I., Sali, A., Baker, D., Sliz, P., 2012. Shining light into black boxes. Science 336 (6078), 159-160. http://dx.doi.org/10.1126/science.1218263 [28] Stodden, V., 2011. Trust your science? Open your data and code. Amstat News July 2011, 21-22. http://www.stanford.edu/~vcs/papers/TrustYourScience-STODDEN.pdf [29] van der Sluijs, J., 2005. Uncertainty as a monster in the science-policy interface: four coping strategies. Water Science & Technology 52 (6), 87-92. http://www.iwaponline.com/wst/05206/wst052060087.htm [30] Iverson, K. E., 1980. Notation as a tool of thought. Communications of the ACM 23 (8), 444-465. http://awards.acm.org/images/awards/140/articles/9147499.pdf [31] Eaton, J. W., Bateman, D., Hauberg, S., 2008. GNU Octave: a high-level interactive language for numerical computations. Network Theory. ISBN: 9780954612061 [32] Eaton, J. W., 2012. GNU octave and reproducible research. Journal of Process Control 22 (8), 1433-1438. http://dx.doi.org/10.1016/j.jprocont.2012.04.006 [33] R Development Core Team, 2011. The R reference manual. Network Theory Ltd. Vol. 1, ISBN: 978-1-906966-09-6. Vol. 2, ISBN: 978-1-906966-10-2. Vol. 3, ISBN: 978-1-906966-11-9. Vol. 4, ISBN: 978-1-906966-12-6. [34] Ramey, C., Fox, B., 2006. Bash reference manual : reference documentation for Bash edition 2.5b, for Bash version 2.05b. Network Theory Limited. ISBN: 978-0-9541617-7-4. [35] de Rigo, D., 2012. Semantic array programming for environmental modelling: Application of the mastrave library. In: Seppelt, R., Voinov, A. A., Lange, S., Bankamp, D. (Eds.), International Environmental Modelling and Software Society (iEMSs) 2012 International Congress on Environmental Modelling and Software. Managing Resources of a Limited Planet: Pathways and Visions under Uncertainty, Sixth Biennial Meeting. pp. 1167-1176. http://www.iemss.org/iemss2012/proceedings/D3_1_0715_deRigo.pdf [36] de Rigo, D., 2012. Semantic Array Programming with Mastrave - Introduction to Semantic Computational Modelling. http://mastrave.org/doc/MTV-1.012-1/ [37] Van Rossum, G., Drake, F.J., 2011. Python Language Ref. Manual. Network Theory Ltd. ISBN: 0954161785. http://www.network-theory.co.uk/docs/pylang/ [38] The Scipy community, 2012. NumPy Reference Guide. SciPy.org. http://docs.scipy.org/doc/numpy/reference/ [39] The Scipy community, 2012. SciPy Reference Guide. SciPy.org. http://docs.scipy.org/doc/scipy/reference/ [40] de Rigo, D., Castelletti, A., Rizzoli, A. E., Soncini-Sessa, R., Weber, E., 2005. A selective improvement technique for fastening neuro-dynamic programming in water resources network management. IFAC-PapersOnLine 16 (1), 7–12. International Federation of Automatic Control (IFAC). http://dx.doi.org/10.3182/20050703-6-CZ-1902.02172 [41] de Rigo, D., Bosco, C., 2011. Architecture of a Pan-European Framework for Integrated Soil Water Erosion Assessment. IFIP Advances in Information and Communication Technology 359, 310318. Springer. http://dx.doi.org/10.1007/978-3-642-22285-6 34 [42] San-Miguel-Ayanz, J., Schulte, E., Schmuck, G., Camia, A., Strobl, P., Liberta, G., Giovando, C., Boca, R., Sedano, F., Kempeneers, P., McInerney, D., Withmore, C., de Oliveira, S. S., Rodrigues, M., Durrant, T., Corti, P., Oehler, F., Vilar, L., Amatulli, G., 2012. Comprehensive monitoring of wildfires in Europe: The European Forest Fire Information System (EFFIS). In: Tiefenbacher, J. (Ed.), Approaches to Managing Disaster - Assessing Hazards, Emergencies and Disaster Impacts. InTech, Ch. 5. http://dx.doi.org/10.5772/28441 [43] de Rigo, D., Caudullo, G., San-Miguel-Ayanz, J., Stancanelli, G., 2012. Mapping European forest tree species distribution to support pest risk assessment. In: Baker, R., Koch, F., Kriticos, D., Rafoss, T., Venette, R., van der Werf, W. (Eds.), Advancing risk assessment models for invasive alien species in the food chain: contending with climate change, economics and uncertainty. Bioforsk FOKUS 7. OECD Cooperative Research Programme on Biological Resource Management for Sustainable Agricultural Systems; Bioforsk - Norwegian Institute for Agricultural and Environmental Research. http://www.pestrisk.org/2012/BioforskFOKUS7-10_IPRMW-VI.pdf [44] Estreguil, C., Caudullo, G., de Rigo, D., Whitmore, C., San-Miguel-Ayanz, J., 2012. Reporting on European forest fragmentation: Standardized indices and web map services. IEEE Earthzine 5 (2), 384031+. (2nd quarter theme: Forest Resource Information). IEEE Committee on Earth Observation (ICEO). http://www.earthzine.org/?p=384031 [45] Estreguil, C., de Rigo, D. and Caudullo, G., (exp.) 2013. Towards an integrated and reproducible characterisation of habitat pattern. Submitted to Environmental Modelling & Software [46] Amatulli, G., Camia, A., San-Miguel-Ayanz, J., 2009. Projecting future burnt area in the EU-mediterranean countries under IPCC SRES A2/B2 climate change scenarios (JRC55149), 33-38 [47] de Rigo, D., Caudullo, G., Amatulli, G., Strobl, P., San-Miguel-Ayanz, J., (exp.) 2013. Modelling tree species distribution in Europe with constrained spatial multi-frequency analysis. In prep. [48] GRASS Development Team, 2012. Geographic Resources Analysis Support System (GRASS) Software. Open Source Geospatial Foundation. http://grass.osgeo.org http://www.spatialecology.net/dokuwiki/doku.php?id=wiki:firemod [49] Neteler, M., Bowman, M. H., Landa, M., Metz, M., 2012. GRASS GIS: A multi-purpose open source GIS. Environmental Modelling & Software 31, 124-130. http://dx.doi.org/10.1016/j.envsoft.2011.11.014 [50] Neteler, M., Mitasova, H., 2008. Open source GIS a GRASS GIS approach. ISBN: 978-0-387-35767-6 [51] Warmerdam, F., 2008. The geospatial data abstraction library. In: Hall, G. B., Leahy, M. G. (Eds.), Open Source Approaches in Spatial Data Handling. Vol. 2 of Advances in Geographic Information Science. Springer Berlin Heidelberg, pp. 87-104. http://dx.doi.org/10.1007/978-3-540-74831-1 5 [52] Open Geospatial Consortium, 2007. OpenGIS Web Processing Service version 1.0.0. No. OGC 05007r7 in OpenGIS Standard. Open Geospatial Consortium (OGC). http://portal.opengeospatial.org/files/?artifact_id=24151 [53] Hazzard, E., 2011. Openlayers 2.10 beginner’s guide. Packt Publishing. ISBN: 1849514127 [54] Obe, R., Hsu, L., 2011. PostGIS in Action. Manning Publications. http://dl.acm.org/citation.cfm?id=2018871 [55] Sutton, T., 2009. Clipping data from postgis. linfiniti.com Open Source Geospatial Solutions. http://linfiniti.com/2009/09/clipping-data-from-postgis/ |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/45958 |
Available Versions of this Item
-
Toward open science at the European scale: geospatial semantic array programming for integrated environmental modelling. (deposited 04 Feb 2013 21:16)
- Toward open science at the European scale: geospatial semantic array programming for integrated environmental modelling. (deposited 08 Apr 2013 12:56) [Currently Displayed]