El Alaoui, Marwane and Benbachir, Saâd (2012): Spillover Effect in the MENA Area: Case of Four Financial Markets. Published in: International Research Journal of Finance and Economics No. 103 (January 2013): pp. 162-177.
Preview |
PDF
MPRA_paper_48682.pdf Download (2MB) | Preview |
Abstract
In this paper, we studied the spillover effect among four financial markets from MENA area during a period that was characterized by political instability. The countries chosen are also signatories of an agreement of free trade in order to liberalize the movement flowing of their capitals. As the linear correlation is unable to capture nonlinear relation between variables, it also suffers from many shortcomings. Reason why, we used copula functions to understand better the dependence structure between markets and to be able to detect spillover effect in that period. The results show that Egyptian Exchange and Casablanca Stock Exchange are highly correlated. We observed the same thing between Amman Stock Exchange and Egyptian Exchange. It seems that Egyptian market transmitted its volatility to the Moroccan and Jordanian markets.
Item Type: | MPRA Paper |
---|---|
Original Title: | Spillover Effect in the MENA Area: Case of Four Financial Markets |
English Title: | Spillover Effect in the MENA Area: Case of Four Financial Markets |
Language: | English |
Keywords: | Spillover effect, Copulas, Contagion, Interdependence |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C19 - Other G - Financial Economics > G1 - General Financial Markets |
Item ID: | 48682 |
Depositing User: | Karl Karl Karl |
Date Deposited: | 29 Jul 2013 11:31 |
Last Modified: | 27 Sep 2019 05:21 |
References: | References Aas, K., Czado, C., Frigessi, A., & Bakken, H. (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics , 44 (2), 182-198. Bonfiglioli, A., & Favero, C. A. (2005). Explaining co-movements between stock markets: The case of US and Germany. Journal of International Money and Finance , 24, 1299-1316. Bortkiewicz, L. v. (1913). Die radioaktive Strahlung als Gegenstand Wahrscheinlichkeits theoretischer Untersuchunge. Berlin: Springer. Bradley, B. O., & Taqqu, M. S. (2004). Framework for Analyzing Spatial Contagion between Financial Markets. Finance Letters , 2 (6), 8-15. Cherubini, U., Luciano, E., & Vecchiato, W. (2004). Copula methods in finance . Chichester: John Wiley & Sons Ltd. Chollete, L., de la Peña, V., & Lu, C.-C. (2011). International diversification: A copula approach. Journal of Banking & Finance , 35, 403-417. Clayton, D. G. (1978). A Model for Association in Bivariate Life Tables and Its Application in Epidemiological Studies of Familial Tendency in Chronic Disease Incidence.Biometrika , 65 (1), 141-151. Clemen, R. T., & Reilly, T. (1999). Correlations and Copulas for Decision and Risk Analysis. Management Science , 45 (2), 208-224. de Melo Mendes, B. V., & de Souza, R. M. (2004). Measuring financial risks with copulas. International Review of Financial Analysis , 13, 27-45. Embrechts, P., McNeil, A., & Straumann, D. (2002). Correlation And Dependence In Risk Management: Properties And Pitfalls. Dans M. A. Dempster, Risk Management: Value at Risk and Beyond (pp. 176-223). Cambridge: Cambridge University Press. Embrechts, P., Resnick, S. I., & Samorodnitsky, G. (1999). Extreme value theory as a risk management tool. North American Actuarial Journal , 3 (2), 30-41. Forbes, K. J., & Rigobon, R. (2002). No Contagion, Only Interdependence: Measuring Stock Market Comovements. The Journal of Finance , LVII (5), 2223-2261. Forbes, K., & Rigobon, R. (2001). Measuring Contagion: Conceptual and Empirical Issues. Dans S. Claessens, & K. Forbes, International Financial Contagion (pp. 43-66). Massachussetts: Springer. Frank, M. (1979). On the simultaneous associativity of F(x, y) and x+y–F(x, y). Aequationes Mathematicae , 19 (2-3), 194-226. Genest, C., & MacKay, J. (1986). The Joy of Copulas: Bivariate Distributions with Uniform Marginals. The American Statistician , 40 (3), 280-283. Gumbel, E. J. (1960). Bivariate Exponential Distributions. Journal of the American Statistical Association , 55 (292), 698-707. Jaworski, P., Duante, F., Härdle, W., & Rychlik, T. (2010). Copula Theory and Its Applications. Heidelberg: Springer-Verlag Berlin Heidelberg. Joag-dev, K., Perlman, M., & Pitt, L. (1983). Association of normal random variables and Slepian’s inequality. Annals of Probability , 11, 451-455. Karolyi, G. A., & Stulz, R. M. (1996). Why Do Markets Move Together? An Investigation of U.S.-Japan Stock Return Comovements. The Journal of Finance , LI (3), 951-986. King, M. A., & Wadhwani, S. (1990). Transmission of Volatility between Stock Markets. The Review of Financial Studies , 3 (1), 5-33. Lagoarde-Segot, T., & Lucey, B. M. (2008). Efficiency in emerging markets—Evidence from the MENA region. International Financial Markets, Institutions and Money , 18 (1), 94–105. McNeil, A., & Neslehova, J. (2009). Multivariate Archimedean copulas, d-monotone functions and λ1-norm symmetric distributions. Ann. Stat. , 37 (5B), 3059-3097. MvNeil, A., & Neslehova, J. (2010). From Archimedean to Liouville copulas. Journal of Multivariate Analysis , 101 (8), 1772-1790. Pindyck, R. S., & Rotemberg, J. J. (1993). The Comovement of Stock Prices. The Quarterly Journal of Economics , 108 (4), 1073-1104. Schweizer, B., & Sklar, A. (1974). Operations on distribution functions not derivable from operations on random variables. Studia Math. , 52, 43-52. Schweizer, B., & Sklar, A. (1983). Probabilistic metric spaces. New York: North-Holland. Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris , 8, 229-231. Sklar, A. (1996). Random Variables, Distribution Functions, and Copulas: A Personal Look Backward and Forward. Lecture Notes-Monograph Series , 28, 1-14. Venter, G. G. (2001). Tails of copulas. Proceedings ASTIN Washington, (pp. 68-113). Washington. Wang, K., Chen, Y.-H., & Huang, S.-W. (2011). The dynamic dependence between the Chinese market and other international stock markets: A time-varying copula approach. International Review of Economics and Finance , 20, 654-664. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/48682 |