Tsagris, Michail (2015): Regression analysis with compositional data containing zero values. Published in: Chilean Journal of Statistics , Vol. 6, No. 2 (8 September 2015): pp. 47-57.
Preview |
PDF
MPRA_paper_67868.pdf Download (338kB) | Preview |
Abstract
Regression analysis, for prediction purposes, with compositional data is the subject of this paper. We examine both cases when compositional data are either response or predictor variables. A parametric model is assumed but the interest lies in the accuracy of the predicted values. For this reason, a data based power transformation is employed in both cases and the results are compared with the standard log-ratio approach. There are some interesting results and one advantage of the methods proposed here is the handling of the zero values.
Item Type: | MPRA Paper |
---|---|
Original Title: | Regression analysis with compositional data containing zero values |
English Title: | Regression analysis with compositional data containing zero values |
Language: | English |
Keywords: | Compositional data, regression, prediction, α-transformation, principal component regression |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C18 - Methodological Issues: General |
Item ID: | 67868 |
Depositing User: | Mr Michail Tsagris |
Date Deposited: | 14 Nov 2015 08:04 |
Last Modified: | 28 Sep 2019 11:38 |
References: | Aitchison, J., 1982. The statistical analysis of compositional data. Journal of the Royal Statistical Society. Series B, 44, 139--177. Aitchison, J., Lauder, I.J., 1985. Kernel density estimation for compositional data. Applied Statistics, 44, 129--137. Aitchison, J., 2003. The statistical analysis of compositional data. Reprinted by The Blackburn Press, New Jersey. Egozcue, J.J. and Pawlowsky-Glahn, V. and Mateu-Figueras, G., Barcelo-Vidal, C., 2003. Isometric logratio transformations for compositional data analysis, 35, 279--300. Egozcue, J.J., Daunis-i-Estadella, J.,Pawlowsky-Glahn, V., Hron, K., Filzmoser, P., 2011. Simplicial regression. The normal model. Journal of Applied Probability and Statistics, 6, 87--108. Gueorguieva, R., Rosenheck, R., Zelterman, D., 2008. Dirichlet component regression and its applications to psychiatric data. Computational statistics & data analysis, 52, 5344--5355. Hron, K., Filzmoser, P., Thompson, K., 2012. Linear regression with compositional explanatory variables. Journal of Applied Statistics, 39, 1115--1128. Jollife, I.T., 2005. Principal component analysis. Springer-Verlag, New York. Kullback, S., 1997. Information theory and statistics. Dover Publications, New York. Lancaster, H.O., 1965. The Helmert matrices. American Mathematical Monthly, 72, 4--12. Lange, K.L., Little, R.J.A., Taylor, J.M.G., 1989. Robust statistical modeling using the t distribution. Journal of the American Statistical Association, 84, 881--896. Maier, M.J., 2011. DirichletReg: Dirichlet Regression in R. R package version 0.3-0. Mardia, K.V., Kent, J.T., Bibby, J.M., 1979. Multivariate Analysis. Academic Press, London. Maronna, R.A., Martin, R.D., Yohai, V.J., 2006. Robust statistics. Wiley, Chichester. Martin-Fernandez, J.A., Hron, K., Templ, M., Filzmoser, P., Palarea-Albaladejo, J., 2012. Model-based replacement of rounded zeros in compositional data: Classical and robust approaches. Computational Statistics & Data Analysis, 56, 2688--2704. Martin-Fernandez, J.A., Barcelo-Vidal, C. and Pawlowsky-Glahn, V., 2012. Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Mathematical Geology, 35, 253--278. Scealy, J.L., Welsh, A.H., 2011. Regression for compositional data by using distributions defined on the hypersphere. Journal of the Royal Statistical Society. Series B, 73, 351--375. Stephens, M.A., 1982. Use of the von Mises distribution to analyse continuous proportions. Biometrika, 69, 197--203. Tsagris, M.T., Preston, S., Wood, A.T.A., 2011. A data-based power transformation for compositional data. In Proceedings of the 4th Compositional Data Analysis Workshop, Girona, Spain. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/67868 |