Tsagris, Michail and Elmatzoglou, Ioannis and C. Frangos, Christos (2012): Assessment of Performance of Correlation Estimates in Discrete Bivariate Distributions using Bootstrap Methodology. Published in: Communications in Statistics - Theory and Methods , Vol. 41, No. 1 (3 January 2012): pp. 138-152.
Preview |
PDF
MPRA_paper_68057.pdf Download (839kB) | Preview |
Abstract
Little attention has been given to the correlation coefficient when data come from discrete or continuous non-normal populations. In this article, we consider the efficiency of two correlation coefficients which are from the same family, Pearson's and Spearman's estimators. Two discrete bivariate distributions were examined: the Poisson and the Negative Binomial. The comparison between these two estimators took place using classical and bootstrap techniques for the construction of confidence intervals. Thus, these techniques are also subject to comparison. Simulation studies were also used for the relative efficiency and bias of the two estimators. Pearson's estimator performed slightly better than Spearman's.
Item Type: | MPRA Paper |
---|---|
Original Title: | Assessment of Performance of Correlation Estimates in Discrete Bivariate Distributions using Bootstrap Methodology |
English Title: | Assessment of Performance of Correlation Estimates in Discrete Bivariate Distributions using Bootstrap Methodology |
Language: | English |
Keywords: | Bivariate, Bootstrap, Correlation |
Subjects: | C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C40 - General C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C46 - Specific Distributions ; Specific Statistics |
Item ID: | 68057 |
Depositing User: | Mr Michail Tsagris |
Date Deposited: | 25 Nov 2015 14:31 |
Last Modified: | 03 Oct 2019 04:55 |
References: | Abramovitch, L., Singh, K. (1985). Edgeworth corrected pivotal statistics and the bootstrap. Ann. Statist. 13:116–132. Beran, R. (1987). Prepivoting to reduce level error of confidence sets. Biometrika 74:457–468. Booth, J. G., Sarkar, S. (1998). Monte Carlo approximations of bootstrap variances. Amer. Statist. 52:354–357. Canty, A., Ripley, A. (2009). Boot: Bootstrap R(S-Plus) Functions. R Package. Chernick, M. (2008). Bootstrap Methods: A Guide for Practitioners and Researchers. New Jersey: John Wiley & Sons. Davison, A. C., Hinkley, D. V. (1997). Bootstrap Methods and Their Application. Cambridge: Cambridge University Press. Davison, A. C., Hinkley, D. V., Worton, B. J. (1992). Bootstrap likelihoods. Biometrika 79:113–130. DiCiccio, T. J., Efron, B. (1996). Bootstrap confidence intervals. Statist. Sci. 11:189–212. Dolker, M., Halperin, S., Divgi, D. R. (1982). Problems with bootstrapping Pearson correlations in very small bivariate samples. Psychometrika 47:529–230. Efron, B. (1979). Computers and the theory of statistics: Thinking the unthinkable. SIAM Rev. 21:460–480. Efron, B. (1982). The Jackknife, the Bootstrap, and Other Resampling Plans. SIAM CBMSNSF Monograph 38. Philadelphia, PA: SIAM. Efron, B. (1987). Better bootstrap confidence intervals (with discussion). J. Amer. Statist. Assoc. 82:171–200. Efron, B., Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statist. Sci. 1:54–77. Efron, B., Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Boca Raton, FL: Chapman and Hall/CRC. Frangos, C. C., Schucany, W. R. (1990). Jackknife estimation of the bootstrap acceleration constant. Comput. Statist. Data Anal. 9:271–281. Greene, W. (2007). Functional form and heterogeneity in models for count data. Found. Trends Econ. 1:113–218. Greene, W. (2007). Functional forms for the negative binomial model for count data. Econ. Lett. 99:585–590. Hall, P. (1988). Theoretical comparison of bootstrap confidence intervals. Ann. Statist. 16:927–253. Hall, P., DiCiccio, T. J., Romano J. P. (1989). On smoothing and the bootstrap. Ann. Statist. 17:692–704. Hall, P., Martin, A. M., Schucany, W. R. (1989). Better nonparametric confidence intervals for the correlation coeffcient. J. Statist. Comput. Simul. 33:161–172. Karlis, D., Ntzoufras, I. (2003). Analysis of sports data using bivariate poisson models. J. Roy. Statist. Soc. D-Sta. 52:381–393. Karlis, D., Ntzoufras, I. (2005). Bivariate Poisson and diagonal inflated bivariate poisson regression models in R. J. Statist. Softw. 14(10). Kawamura, K. (1973). The structure of bivariate Poisson distribution. Kodai Mathematical Journal 25:246–256. Kocherlakota, S., Kocherlakota, K. (1992). Bivariate Discrete Distributions. New York: Marcel Dekker, Inc. Lee, W., Rodgers, J. L. (1998). Bootstrap correlation coefficients using univariate and bivariate sampling. Psychol. Meth. 3:91–103. Loh, W. Y. (1987). Calibrating confidence intervals. J. Amer. Statist. Assoc. 82:155–162. Loukas, S., Kemp, C. D. (1986). The computer generation of bivariate binomial and negative binomial random variables. Commun. Statist. Simul. C 15:15–25. Lunneborg, E. C. (1985). Estimating the correlation coefficient: the bootstrap approach. Psychol. Bull. 98:209–215. Miller, R. G. (1974). The jackknife: A review. Biometrika 6:1–15. Morgan, B. J. T. (1984). Elements of Simulation. London: Chapman and Hall. Rao, C. R. (1989). Statistics and Truth, Putting Chance to Work. Burtonsville: International Cooperative Publishing House. Rasmussen, J. L. (1987). Estimating correlation coefficients: bootstrap and parametric approaches. Psychol. Bull. 101:136–139. Young, A. G. (1988). A note on bootstrapping the correlation coefficient. Biometrika 75:370–373. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/68057 |