Gurgul, Henryk and Syrek, Robert (2010): Polish stock market and some foreign markets – dependence analysis by regime-switching copulas. Published in: Managerial Economics , Vol. 8, No. 1 (2010): pp. 21-39.
Preview |
PDF
MPRA_paper_68576.pdf Download (166kB) | Preview |
Abstract
The aim of this paper is investigation of DJIA, DAX, ATX and WIG20 interdependence based on weekly returns. In order to capture asymmetry of dependence structure Archimedean copulas were applied and symmetric structures are modelled with elliptical copulas. The strength of dependence between extreme events is examined by tail dependence coefficients. Changes in dependence patterns and parameter values are obtained by the application of the regime–switching model based on the first order Markov chain. We are using a two-step maximum likelihood estimation method which separates marginal distributions from the dependence structure. Parameters of copulas are estimated using Hamilton filter adopted to copulas. The copula based on regime–switching model allows us to model time varying dependence structure in a very flexible way. Empirical results confirm dynamic and asymmetric structure of dependence represented by stock markets under study, especially they verify strong and dynamic lower tail dependence.
Item Type: | MPRA Paper |
---|---|
Original Title: | Polish stock market and some foreign markets – dependence analysis by regime-switching copulas |
English Title: | Polish stock market and some foreign markets – dependence analysis by regime-switching copulas |
Language: | English |
Keywords: | copula, switching model, tail dependence coefficients |
Subjects: | G - Financial Economics > G0 - General G - Financial Economics > G0 - General > G00 - General |
Item ID: | 68576 |
Depositing User: | Dr Łukasz Lach |
Date Deposited: | 30 Dec 2015 02:01 |
Last Modified: | 03 Oct 2019 02:21 |
References: | [1] Aas K., Czado C., Frigessi A., Bakken H., Pair-copula constructions of multiple Dependence, Insurance: Mathematics and Economics 2007, vol. 44, iss. 2, s. 182–98. [2] Ammermann A.H., Patterson D.M., The cross-sectional and cross-temporal universality of nonlinear serial dependencies: evidence from World Stock Indices and the Taiwan Stock Exchange, Pacific-Basin Finance Journal 2003, vol. 11, s. 175–95. [3] Ang A., Bekaert G., International asset allocation with regime shifts, Review of Financial Studies 2002, vol. 15(4), s. 1137–87. [4] Ang A., Bekaert G., Regime switches in interest rates, Journal of Business and Economic Statistics 2002, vol. 20, s. 163–182. [5] Ang A., Chen J., Asymmetric correlations of equity portfolios, Journal of Financial Economics 2002, vol. 63(3), s. 443–94. [6] Bessler D.A., Yang J., The structure of interdependence in international stock markets, Journal of International Money and Finance 2003, vol. 22, s. 261–287. [7] Bollerslev T., Modelling the coherence in short-run nominal exchange rates: A multivariate generalized ARCH model, Review of Economics and Statistics 1990, vol. 72(3), s. 498–505. [8] Bollerslev T., Engle R.F., Wooldridge, J.M., A Capital Asset Pricing Model with Time-Varying Covariances, Journal of Political Economy 1988, vol. 96, s. 116–131. [9] Bonilla C.A., Romero-Meza R., Hinich M.J., Episodic nonlinearity in Latin American Stock Market Indices, Applied Economics Letters 2006, vol. 13, s. 155–199. [10] Booth G.G., Martikainen T., Tse Y., Price and volatility spillovers in Scandinavian stock markets, Journal of Banking and Finance 1997, vol. 21, s. 811–823. [11] Capéraa P., Fougeres A.L., Genest C., A nonparametric estimation procedure for bivariate extreme value copulas, Biometrika 1997, vol. 849 (30), s. 567–577 [12] Chen Y. T., Moment-based Copula Tests for Financial Returns, Journal of Business and Economic Statistics 2007, vol. 25, s. 377–397. [13] Chollete L., Heinen A., Valdesogo A., Modeling International Financial Returns with Multivariate Regime Switching Copula, Journal of Financial Econometrics 2009, vol. 7(4), s. 437–480. [14] Embrechts, P., McNeil, A., Straumann, D., Correlation: Pitfalls and Alternatives, Risk 1999, vol. 5, s. 69–71. [15] Engle R.F., Dynamic Conditional Correlation: A Simple Class of Multivariate GARCH Models, Journal of Business and Economic Statistics 2002, vol. 20, s. 339–350. [16] Eun C.S., Shim S., International transmission of stock market movements, Journal of Finance and Quantitative Analysis 1989, vol. 24(2), s. 241–256. [17] Garcia R., Tsafak G., Dependence structure and extreme comovements in international equity and bond markets with portfolio diversification effects, Working Paper, Risk Asset Management Research Centre 2008, EDHEC. [18] Gilmore C.G., McManus G.M., Random walk and efficiency tests of Central European Equity Markets, Managerial Finance 2003, vol. 29, s. 42–61. [19] Guidolin M., Timmermann A., An econometric model of nonlinear dynamics in the joint distribution of stock and bond returns, Journal of Applied Econometrics 2006a, vol. 21, s. 1–22. [20] Guidolin M., Timmermann A., Term structure of risk under alternative econometric specifications, Journal of Econometrics 2006, vol. 131, s. 285–308. [21] Hamilton J.D., A new approach to the economic analysis of nonstationary time series and the business cycle, Econometrica 1989, vol. 57, s. 357–384. [22] Hamilton J.D., Time Series Analysis, Princeton Press 1994a. [23] Hansen B.E., Autoregressive Conditional Density Estimation, International Economic Review 1994b, vol. 35, s. 705–730. [24] Hu L., Dependence Patterns Across Financial Markets, Applied Financial Economics 2006, vol. 16, s. 717–729. [25] J J oe H., Multivariate Models and Dependence Concepts, Monographs on Statistics and Applied Probability 1997, No. 37, Chapman & Hall, London. [26] J J ondeau E., Rockinger M., The Copula-GARCH Model of Conditional Dependences: An International Stock Market Application, Journal of International Money and Finance 2006, vol. 25(5), s. 27–53. [27] J J ondeau E., Poon S., Rockinger M., Financial Modelling Under Non-Gaussian Distributions, Springer Finance Textbooks 2007, Springer, New York. [28] Kim S.W., Rogers J.H., International stock price spillovers and market liberalization: Evidence from Korea, Japan, and the United States, Journal of Empirical Finance 1995, vol. 2, s. 117–133. [29] Klein I., Köck C., Tinkl F., Spatial-serial dependency in multivariate GARCH models and dynamic copulas: a simulation study, Ekonomia Menedżerska 2010, nr 7. [30] Lim K.P., Hinich M.J., Cross-temporal universality of nonlinear dependencies in Asian Stock Markets, Economics Bulletin 2005, vol. 7, s. 1–6. [31] Lim K.P., Hinich M.J., Liew K.S., Episodic non-linearity and non-stationarity in ASEAN exchange rates returns series, Labuan Bulletin of International Business and Finance 2003, vol. 1, s. 79–93. [32] Lin W., Engle R., Ito T., Do bulls and bears move across borders? International transmission of stock returns and volatility, Review of Financial Studies 1994, vol. 7(3), s. 507–538. [33] Longin F., Solnik B., Extreme Correlation of International Equity Markets, Journal of Finance 2001, vol. 56(2), s. 649–76. [34] Manner H., Testing for asymmetric dependence. Studies in Nonlinear Dynamics & Econometrics 2010, 14(2). [35] Manner H., Reznikova O., Time varying copulas: a survay. Institut de statistique, Université catholique de Louvain 2009, DP 0917. [36] McNeil A., Frey, R., Embrechts, P., Quantitative Risk Management, Princeton Series in Finance 2005, Princeton. [37] Ng A., Volatility spillover effect from Japan and the US to the Pacific-Basin, Journal of International Money and Finance 2000, vol. 19, s. 207–233. [38] Nivet J.F., Stock markets in transition: the Warsaw experiment, Economics of Transition 1997, vol. 5, s. 171–83. [39] Okimoto T., New Evidence of Asymmetric Dependence Structures in International Equity Markets, Journal of Financial and Quantitative Analysis 2008, vol. 43(3), s. 787–815. [40] Palmitesta P., Provasi C., Aggregation of Dependent Risks using the Koehler-‑Symanowski Copula Function, Computational Economics 2005, vol. 25, s. 189–205. [41] Patton A., On the out-of-sample importance of skewness and asymmetric dependence for asset allocation, Journal of Financial Econometrics 2004, vol. 2(1), s. 130–168. [42] Patton A., Estimation of multivariate models for time series of possibly different lengths, Journal of Applied Econometrics 2006a, vol. 21(2), s. 147–173. [43] Patton A., Modelling asymmetric exchange rate dependence, International Economic Review 2006b, vol. 47(2), s. 527–556. [44] Pelletier D., Regime-switching for dynamic correlation, Journal of Econometrics 2006, vol. 131, s. 445–473. [45] Ramchand L., Susmel R., Volatility and cross correlation across major stock markets, Journal of Empirical Finance 1998, vol. 17, s. 581–610. [46] Rodriguez J., Measuring financial contagion: A copula approach, Journal of Empirical Finance 2007, vol. 14, s. 401–423. [47] Sharkasi A., Ruskin H.J., Crane M., Interrelationships among international stock market indices: Europe, Asia and the Americas, International Journal of Theoretical and Applied Finance 2005, vol. 8(5), s. 603–622. [48] Todea A., Zaicas-lenciu A., Episodic dependencies in Central and Eastern Europe stock markets, Applied Economics Letters 2008, vol. 15, s. 1123–1126. [49] Worthington A.C., Higgs H., Random walks and market efficiency in European equity markets, Global Journal of Finance and Economics 2004, vol. 1, s. 59–78. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/68576 |