Sellner, Richard and Fischer, Manfred M. and Koch, Matthias (2010): A spatial autoregressive Poisson gravity model. Published in: Geographical Analysis , Vol. 41, No. 2 : pp. 180-200.
Preview |
PDF
MPRA_paper_77551.pdf Download (564kB) | Preview |
Abstract
In this paper, a Poisson gravity model is introduced that incorporates spatial dependence of the explained variable without relying on restrictive distributional assumptions of the underlying data generating process. The model comprises a spatially filtered component - including the origin, destination and origin-destination specific variables - and a spatial residual variable that captures origin- and destination-based spatial autocorrelation. We derive a 2-stage nonlinear least squares estimator that is heteroscedasticity-robust and, thus, controls for the problem of over- or underdispersion that often is present in the empirical analysis of discrete data or, in the case of overdispersion, if spatial autocorrelation is present. This estimator can be shown to have desirable properties for different distributional assumptions, like the observed flows or (spatially) filtered component being either Poisson or Negative Binomial. In our spatial autoregressive model specifcation, the resulting parameter estimates can be interpreted as the implied total impact effects defined as the sum of direct and indirect spatial feedback effects. Monte Carlo results indicate marginal finite sample biases in the mean and standard deviation of the parameter estimates and convergence to the true parameter values as the sample size increases. In addition, the paper illustrates the model by analysing patent citation flows data across European regions.
Item Type: | MPRA Paper |
---|---|
Original Title: | A spatial autoregressive Poisson gravity model |
Language: | English |
Keywords: | n.a. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C10 - General |
Item ID: | 77551 |
Depositing User: | Dr. Manfred M. Fischer |
Date Deposited: | 21 Mar 2017 14:22 |
Last Modified: | 27 Sep 2019 15:37 |
References: | Bailey, T. C., and A. C. Gatrell. (1995). Interactive Spatial Data Analysis. Boston: Addison-Wesley Longman. Cameron, A. C., and P. K. Trivedi. (1998). Regression Analysis of Count Data. Cambridge: University Press. Cameron, A. C., and P. K. Trivedi. (2005). Microeconometrics: Methods and Applications. Cambridge: University Press. Cliff, A. D., R. L. Martin, and J. K. Ord. (1974). “Evaluating the Friction of Distance Parameter in Gravity Models.” Regional Studies 8, 281–86. Curry, L., D. A. Griffith, and E. S. Sheppard. (1975). “Those Gravity Parameters Again.” Regional Studies 9, 289–96. Davies, R. B., and C. M. Guy. (1987). “The Statistical Modeling of Flow Data When the Poisson Assumption Is Violated.” Geographical Analysis 19(4), 300–14. Fischer, M. M., and D. A. Griffith. (2008). “Modeling Spatial Autocorrelation in Spatial Interaction Data: An Application to Patent Citation Data in the European Union.” Journal of Regional Science 48(5), 969–89. Fischer, M. M., and A. Reggiani. (2004). “Spatial Interaction Models: From the Gravity to the Neural Network Approach.” In Urban Dynamics and Growth. Advances in Urban Economics, 319–346, edited by P. Nijkamp. Amsterdam: Elsevier. Fischer, M. M., and M. Reismann. (2002). “A Methodology for Neural Spatial Interaction Models.” Geographical Analysis 34(3), 207–28. Fischer, M. M., and J. Wang. (2011). Spatial Data Analysis: Models, Methods and Techniques. Berlin, Heidelberg, and New York: Springer. Fischer, M. M., T. Scherngell, and E. Jansenberger. (2006). “The Geography of Knowledge Spillovers between High-Technology Firms in Europe: Evidence from A Spatial Interaction Model.” Geographical Analysis 38(3), 288–309. Fischer, M. M., M. Reismann, and T. Scherngell. (2010). “Spatial Interaction and Spatial Autocorrelation.” In Perspectives on Spatial Data Analysis, Pages, 61–79, edited by L. Anselin and S. Rey. Berlin, Heidelberg, and New York: Springer. Flowerdew, R., and M. Aitkin. (1982). “A Method of Fitting the Gravity Model Based on the Poisson Distribution.” Journal of Regional Science 22(2), 191–202. Griffith, D. A. (2003). Spatial Autocorrelation and Spatial Filtering: Gaining Understanding through Theory and Scientific Visualization. Berlin, Heidelberg, and New York: Springer. Griffith, D. A. (2011). “Positive Spatial Autocorrelation Impacts on Attribute Variable Frequency Distributions.” Chilean Journal of Statistics 2(2), 3–28. Griffith, D. A., and K. Jones. (1980). “Explorations into the Relationship between Spatial Structure and Spatial Interaction.” Environment and Planning A 12(2), 187–201. Haworth, J. M., and P. J. Vincent. (1979). “The Stochastic Disturbance Specification and Its Implications for Log-linear Regression.” Environment and Planning A 11(7), 781–90. Jenish, N., and I. R. Prucha. (2012). “On Spatial Processes and Asymptotic Inference under near-Epoch Dependence.” Journal of Econometrics 170(1), 178–90. Karlis, D., and L. Meligkotsidou. (2005). “Multivariate Poisson Regression with Covariance Structure.” Statistics and Computing 15(4), 255–65. Kelejian, H. H., and I. R. Prucha. (1998). “A Generalized Spatial Two-Stage Least Squares Procedures for Estimating A Spatial Autoregressive Model with Autoregressive Disturbances.” Journal of Real Estate Finance and Economics 17(1), 99–121. LeSage, J. P., and M. M. Fischer. (2010). “Spatial Econometric Methods for Modeling Origin-Destination Flows.” In Handbook of Applied Spatial Analysis, 409–33, edited by M. M. Fischer and A. Getis. Berlin, Heidelberg, and New York: Springer. LeSage, J. P., and K. Pace. (2008). “Spatial Econometric Modeling of Origin-destination Flows.” Journal of Regional Science 48(5), 941–67. LeSage, J. P., and K. Pace. (2009). Introduction to Spatial Econometrics. Boca Raton, London and New York: CRC Press, Taylor & Francis Group. LeSage, J. P., M. M. Fischer, and T. Scherngell. (2007). “Knowledge Spillovers across Europe: Evidence from A Poisson Spatial Interaction Model with Spatial Effects.” Papers in Regional Science 86(3), 393–421. Niedercorn, J. H., and B. V. Bechdolt. (1969). “An Economic Derivation of the ‘Gravity Law’ of Spatial Interaction.” Journal of Regional Science 9(2), 273–82. Pace, R. K., and R. Barry. (1997). “Quick Computation of Spatial Autoregressive Estimators.” Geographical Analysis 29(3), 232–47. Pötscher, B. M., and I. R. Prucha. (1997). Dynamic Nonlinear Econometric Models: Asymptotic Theory. New York: Springer. Sen, A., and T. E. Smith. (1995). Gravity Models of Spatial Interaction Behavior. Berlin, Heidelberg, and New York: Springer. Sheppard, E. S. (1978). “Theoretical Underpinnings of the Gravity Hypothesis.” Geographical Analysis 10(4), 386–401. Wilson, A. G. (1970). Entropy in Urban and Regional Modelling. London: Pion Limited. Wilson, A. G. (1971). “A Family of Spatial Interaction Models and Associated Developments.” Environment and Planning 3(1), 1–32. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/77551 |