Tsagris, Michail (2017): Conditional Independence test for categorical data using Poisson log-linear model. Published in: Journal of Data Science , Vol. 2, No. 15 (March 2017): pp. 347-356.
Preview |
PDF
MPRA_paper_79464.pdf Download (178kB) | Preview |
Abstract
We demonstrate how to test for conditional independence of two variables with categorical data using Poisson log-linear models. The size of the conditioning set of variables can vary from 0 (simple independence) up to many variables. We also provide a function in R for performing the test. Instead of calculating all possible tables with for loop we perform the test using the log-linear models and thus speeding up the process. Time comparison simulation studies are presented.
Item Type: | MPRA Paper |
---|---|
Original Title: | Conditional Independence test for categorical data using Poisson log-linear model |
Language: | English |
Keywords: | Conditional independence, categorical data, Poisson log-linear models |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C12 - Hypothesis Testing: General |
Item ID: | 79464 |
Depositing User: | Mr Michail Tsagris |
Date Deposited: | 01 Jun 2017 05:17 |
Last Modified: | 27 Sep 2019 13:03 |
References: | Agresti, A. (2002). Categorical data analysis. John Wiley & Sons. Cheng, P. E., Liou, J.W., Liou, M., and Aston, J. A. (2006). Data information in contingency tables: a fallacy of hierarchical loglinear models. Journal of Data Science, 4, 387V398. Cheng, P. E., Liou, J.W., Liou, M., and Aston, J. A. (2007). Linear information models: An introduction. Journal of Data Science, 5, 297V313. Kalisch, M., Machler, M., Colombo, D., Maathuis, M. H., and Buhlmann, P. (2012). Causal inference using graphical models with the r package pcalg. Journal of Statistical Software, 47,1V26. Neapolitan, R. E. et al. (2004). Learning Bayesian Networks. Prentice Hall Upper Saddle River. Papadakis, M., Tsagris, M., Dimitriadis, M., Tsamardinos, I., Fasiolo, M., Bor- boudakis, G., and Burkardt, J. (2017). Rfast: Fast R Functions. R package version 1.7.5. Spirtes, P., Glymour, C. N., and Scheines, R. (2000). Causation, prediction, and search. MIT press. Tsamardinos, I. and Borboudakis, G. (2010). Permutation testing improves bayesian network learning. In Machine Learning and Knowledge Discovery in Databases, 322V337. Springer. Tsamardinos, I., Brown, L. E., and Aliferis, C. F. (2006). The max-min hill- climbing bayesian network structure learning algorithm. Machine learning, 65, 31V78. Zeileis, A., Wiel, M. A., Hornik, K., and Hothorn, T. (2008). Implementing a class of permutation tests: the coin package. Journal of Statistical Software, 28, 1V23. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/79464 |