Greco, Salvatore and Ishizaka, Alessio and Resce, Giuliano and Torrisi, Gianpiero (2017): Is the Grass Always Greener on the Other Side of the fence? Composite Index of Well-Being Taking into Account the Local Relative Appreciations in Better Life Index.
Preview |
PDF
MPRA_paper_82718.pdf Download (1MB) | Preview |
Abstract
The multidimensional measures of well-being, such as the OECD Better Life Index (BLI), are receiving considerable attention. We introduce a composite index that, departing from the current practice, accounts for societal relative appreciation for the considered dimensions. We apply our methodology to the BLI using the data on preferences gathered from the OECD website. Our analysis signals pervasive differences in the country-level performances that cannot be compensated through differences in local preferences. Furthermore, individual preferences exacerbate multidimensional inequality between countries. Hence, we conjecture that better performing countries offer a policy mix better tailored to fit citizens’ preferences.
Item Type: | MPRA Paper |
---|---|
Original Title: | Is the Grass Always Greener on the Other Side of the fence? Composite Index of Well-Being Taking into Account the Local Relative Appreciations in Better Life Index |
Language: | English |
Keywords: | Well-Being; Better Life Index; Composite Index; Local Preferences; Stochastic Multi-Objective Acceptability Analysis |
Subjects: | C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C44 - Operations Research ; Statistical Decision Theory H - Public Economics > H1 - Structure and Scope of Government > H11 - Structure, Scope, and Performance of Government I - Health, Education, and Welfare > I3 - Welfare, Well-Being, and Poverty > I31 - General Welfare, Well-Being |
Item ID: | 82718 |
Depositing User: | Gianpiero Torrisi |
Date Deposited: | 30 Dec 2017 11:31 |
Last Modified: | 03 Oct 2019 15:21 |
References: | Alesina, A. F., & Giuliano, P. (2009). Preferences for redistribution (No. w14825). National Bureau of Economic Research. Angilella, S., Bottero, M., Corrente, S., Ferretti, V., Greco, S., Lami, I. M. (2016). Non Additive Robust Ordinal Regression for urban and territorial planning: an application for siting an urban waste landfill. Annals of Operations Research, 245, 1-30. Arrow, K. J. (1951). Social choice and individual values. London: Wiley/Chapman & Hall; 2nd ed. (1963). New Haven and London: Yale University Press. Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092. Blanke, J. (2016). What is GDP, and how are we Misusing It?. In World Economic Forum. Bleys, B. (2012). Beyond GDP: Classifying Alternative Measures for Progress, Social Indicators Research, 109, 355–376. Buchanan, J. M., & Tullock, G. (1962). The calculus of consent (Vol. 3). Ann Arbor: University of Michigan Press. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. Chase-Dunn, C., & Gills, B. (2005). Waves of globalization and resistance in the capitalist world system: social movements and critical global studies. Critical globalization studies, 45, 54. Cherchye, L., Moesen, W., Rogge, N., & Van Puyenbroeck, T. (2007). An introduction to ‘benefit of the doubt’ composite indicators. Social Indicators Research, 82(1), 111-145. Cherchye, L., Moesen, W., Rogge, N., Van Puyenbroeck, T., Saisana, M., Saltelli, A., Liska, R., Tarantola, S. (2008). Creating composite indicators with DEA and robustness analysis: the case of the Technology Achievement Index, Journal of the Operational Research Society, 59(2), 239-251. Costanza, R., Daly, L., Fioramonti, L., Giovannini, E., Kubiszewski, I., Mortensen, L. F., ... & Wilkinson, R. (2016). Modelling and measuring sustainable wellbeing in connection with the UN Sustainable Development Goals. Ecological Economics, 130, 350-355. Costanza, R., Kubiszewski, I., Giovannini, E., Lovins, H., McGlade, J., Pickett, K. E., ... & Wilkinson, R. (2014). Development. Nature, 505(7483), 283-285. Coyle D. (2014) GDP: A brief but affectionate history, Princeton University Press, Princeton. De Beukelaer C. (2014) Gross Domestic Problem: The Politics Behind the World's Most Powerful Number, Journal of Human Development and Capabilities 15.2-3, 290-291. Drazen, A. (2004). Political economy in macro economics. Orient Blackswan. Easterlin, R. A. (1974). Does economic growth improve the human lot? Some empirical evidence. Nations and households in economic growth, 89, 89-125. Fioramonti L. (2013) Gross domestic problem: The politics behind the world's most powerful number, Zed Books. Fleurbaey M. (2009) Beyond GDP: The quest for a measure of social welfare, Journal of Economic Literature, 1029-1075. Floridi, M., Pagni, S., Falorni, S., & Luzzati, T. (2011). An exercise in composite indicators construction: Assessing the sustainability of Italian regions. Ecological economics, 70(8), 1440-1447. Foster J. McGillivray M. Seth S. (2009) Rank robustness of composite indices, OPHI Working paper 26. Frey, B. S. (1983). Democratic economic policy: A theoretical introduction. Palgrave Macmillan. Frey, B. S., & Stutzer, A. (2010). Happiness and public choice. Public Choice, 144(3-4), 557-573. Frey, B. S., Luechinger, S., & Stutzer, A. (2009). The life satisfaction approach to valuing public goods: The case of terrorism. Public Choice, 138(3-4), 317-345. Greco, S., Figueira, J., & Ehrgott, M. (2005). Multiple criteria decision analysis. Springer's International series. Greco, S., Ishizaka, A., Matarazzo, B., & Torrisi, G. (2017). Stochastic multi-attribute acceptability analysis (SMAA): an application to the ranking of Italian regions. Regional Studies, 1-16. Hartigan, J. A. and Wong, M. A. (1979). A K-means clustering algorithm. Applied Statistics 28, 100–108. Helliwell J.F. (2003) How's life? Combining individual and national variables to explain subjective well-being, Economic Modelling, 20(2), 331-360. Helliwell J.F. Barrington‐Leigh C. P. (2010) Viewpoint: Measuring and understanding subjective well‐being, Canadian Journal of Economics/Revue canadienned'économique, 43(3), 729-753. Hirschman A.O. (1970) Exit, voice, and loyalty: Responses to decline in firms, organizations, and states (Vol. 25). Harvard university press. INSEE. (2010). Stiglitz report: The French national statistical agenda. Paris: INSEE. Ishizaka A. Nemery P. (2013) Multi-criteria decision analysis: methods and software John Wiley & Sons. ISTAT, CNEL. (2013). Il benessere equo e sostenibile in Italia. Roma: ISTAT. ISTAT. (2016). BES 2016: The equitable and sustainable well-being. Roma: ISTAT. Karabell Z. (2014) The leading indicators: a short history of the numbers that rule our world, Simon and Schuster. Kutznets S. (1934) National income 1929-32. Letter from the Acting Secretary of Commerce transmitting in Response to Senate Resolution 22: 7. Lahdelma, R., & Salminen, P. (2010). Stochastic multicriteria acceptability analysis (SMAA). In Trends in Multiple Criteria Decision Analysis (pp. 285-315). Springer US. Lahdelma, R., Hokkanen, J., Salminen, P. (1998). SMAA-stochastic multiobjective acceptability analysis. European Journal of Operational Research; 106(1), 137-143. Lahdelma, R., Salminen, P. (2001). SMAA-2: Stochastic multicriteria acceptability analysis for group decision making. Operations Research; 49(3), 444-454. Lorenz, J., Brauer, C., & Lorenz, D. (2016). Rank-Optimal Weighting or “How to be Best in the OECD Better Life Index?”. Social Indicators Research, 1-18. Marković, M., Zdravković, S., Mitrović, M., Radojičić, A. (2016).An Iterative Multivariate Post Hoc I-Distance Approach in Evaluating OECD Better Life Index. Social Indicators Research, 126.1, 1-19. McGraw, K. O., & Wong S. P. (1996a). Forming inferences about some intraclass correlation coefficients. Psychological Methods, 1, 30–46. McGraw, K. O., & Wong S. P. (1996a). Forming inferences about some intraclass correlation coefficients: Correction. Psychological Methods, 1, 309. Mizobuchi H. (2014) Measuring World Better Life Frontier: A composite Indicator for OECD Better Life Index, Social Indicators Research, 118.3, 987-1007. Mueller, D. C. (1996). Constitutional democracy. Oxford University Press on Demand. Mueller, D. C. (2003). Public choice (Vol. III). Nardo, M., Saisana, M., Saltelli, A., Tarantola, S., Hoffman, A., & Giovannini, E. (2008). Handbook on constructing composite indicators. Paris: OECD-JRC. OECD (2016) How's Life? 2016 - Measuring Well-being, Paris: OECD Publishing OECD (2017) Glossary of Statistical Terms, Paris. OECD. (2011). Compendium of Oecd well-being indicators. Paris: OECD Publishing. ONS. (2011). Measuring what matters, National Statistician’s reflections on the national debate on measuring national well-being. Office of National Statistics, UK. Patrizii, V., Pettini, A., Resce, G. (2017). The Cost of Well-Being. Social Indicators Research, 133 (3), 985–1010. Permanyer I. (2011) Assessing the robustness of composite indices rankings, Review of Income and Wealth, 57(2), 306-326. Persson, T., & Tabellini, G. E. (2002). Political economics: explaining economic policy. MIT press. R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Saisana M. Tarantola S. Saltelli A. (2005) Uncertainty and sensitivity techniques as tools for the analysis and validation of composite indicators, Journal of the Royal Statistical Society A, 168(2),307-323. Seita, A. Y. (1997). Globalization and the Convergence of Values. Cornell International Law Journal, 30(429). Sharpe A. (2004) Literature Review of Frameworks for Macro-indicators, Centre for the Study of Living Standards, Ottawa, CAN. Shen, Y., Hermans, E., Brijs, T., & Wets, G. (2013). Data envelopment analysis for composite indicators: A multiple layer model. Social Indicators Research, 114(2), 739-756. Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86, 420–428. Stiglitz, J. E., Sen, A., & Fitoussi, J. P. (2010). Report by the commission on the measurement of economic performance and social progress. Paris: Commission on the Measurement of Economic Performance and Social Progress. Tervonen, T., & Figueira, J. R. (2008). A survey on stochastic multicriteria acceptability analysis methods. Journal of Multi‐Criteria Decision Analysis, 15(1‐2), 1-14. Tiebout C.M. (1956) A pure theory of local expenditures. The journal of political economy, 416-424. Tilly, C. (1995). Citizenship, identity and social history. International review of social history, 40(S3), 1-17. UNDP (1990) UNDP Human Development Report 1990 Oxford University Press, New York. UNDP (1996) Human Development Report. United Nation Development Programme, Nairobi, Kenia. Vanberg, V. J. (2005). Market and state: the perspective of constitutional political economy. Journal of Institutional Economics, 1(1), 23-49. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/82718 |