Aparicio, Jesus and Tenza-Abril, Antonio and Borg, Malcolm and Galea, John and Candela, Lucila (2018): Agricultural irrigation of vine crops from desalinated and brackish groundwater under an economic perspective. A case study in Siġġiewi, Malta. Published in: Science of the Total Environment , Vol. 650, No. Part 1, 10 February 2019 (5 September 2018): pp. 734-740.
PDF
MPRA_paper_92268.pdf Download (1MB) |
|
PDF
MPRA_paper_92268.pdf Download (859kB) |
Abstract
Maltese agriculture faces great challenges due to the severe scarcity ofwater. Sufficientwater resources, in quantity and quality, are necessary to cover the demand in the production of wine grape, one of the most important crops in Maltese agriculture. But also, economic efficiency is essential in the grape cultivation. A Cost-Benefit Analysis (CBA) is defined for Maltese vineyards in the Siġġiewi region, considering two irrigation scenarios, irrigation with groundwater or “do-nothing”, comparedwith the “use non-conventional waters” from mixing water from a small desalination plant and groundwater. For the alternative ‘mixing desalinatedwater with groundwater’ it is possible to improve water availability and quality for vine crops, while increasing economic benefits for farmer. The results indicate a profitable project fromaminimumarea of 1 ha, but final benefit is highly dependent on the irrigated surface extension according to water price. Desalination, compared with other type of nonconventional water is considered the best option in this assessment with a small reverse osmosis (RO) desalination plant (120 m3 /day) for covering the irrigation needs.
Item Type: | MPRA Paper |
---|---|
Original Title: | Agricultural irrigation of vine crops from desalinated and brackish groundwater under an economic perspective. A case study in Siġġiewi, Malta |
English Title: | Agricultural irrigation of vine crops from desalinated and brackish groundwater under an economic perspective. A case study in Siġġiewi, Malta |
Language: | English |
Keywords: | Cost Benefit Analysis Desalinated water Groundwater Vine crops Agricultural management |
Subjects: | Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q0 - General > Q01 - Sustainable Development Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q14 - Agricultural Finance Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q16 - R&D ; Agricultural Technology ; Biofuels ; Agricultural Extension Services Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q56 - Environment and Development ; Environment and Trade ; Sustainability ; Environmental Accounts and Accounting ; Environmental Equity ; Population Growth |
Item ID: | 92268 |
Depositing User: | Dr Jesus Aparicio |
Date Deposited: | 25 Feb 2019 13:25 |
Last Modified: | 14 Jan 2025 15:28 |
References: | Aparicio, J., Candela, L., Alfranca, O., García-Aróstegui J.L., 2017. Economic evaluation of small desalination plants from brackish aquifers. Application to Campo de Cartagena. Desalination 411, 38–44 doi: 10.1016/j.desal.2017.02.004 Aslam, R.A., Shrestha, S., Pandey, V.P., 2018. Groundwater vulnerability to climate change: a review of the assessment methodology. Sci. Total Environ. 612:853–875. https://doi.org/10.1016/j.scitotenv.2017.08.237 Birol, E., Karousakis, K., Koundouri, P., 2006. Using economic valuation techniques to inform water resources management: a survey and critical appraisal of available techniques and an application. Sci Total Environ 365, 105–22 Boardman, A.E, Mallery, W.L., and Vining, A.R., 1994. Learning from ex ante/ex post cost-benefit comparisons: The Coquihalla Highway example. Socio-Economic Planning Science 28 2, 69-84. Burnett, B., Wada, C., Endo, A., Taniguchi M., 2017. The economic value of groundwater in Obama. J Hydrol Reg Stud 11, 44–52. https://doi.org/10.1016/j.ejrh Candela, L., Tamoh, K., Vadillo, I., Valdes-Abellan, J., 2016. Monitoring of selected pharmaceuticals over 3 years in a detrital aquifer during artificial groundwater recharge. Environmental Earth Sciences 75 3: 1-13 doi: 10.1007/s12665-015-4956-8 CAP436., 2001. Wine act. Laws of Malta. To provide for the control of the production, importation, marketing and advertising of wine and wine related products. Malta. CCA., 2010. Nacional Climate Change Adaptation Strategy- Consultation report. CCCA, Malta, November, can be retrieved from: https://msdec.gov.mt/en/Document/20Repository/Malta/20Climate/20Change/20Adaptation/20Strategy/National/20Climate/20Change/20Adaptation/20Strategy/20(Consultation/20Report).pdf Di Matteo, L., Dragoni, W., Maccari, D., Piacentini, S.M., 2017. Climate change, water supply and environmental problems of headwaters: the paradigmatic case of the Tiber, Savio and Marecchia rivers (Central Italy). Sci. Total Environ. 598:733–748.https:// doi.org/10.1016/j.scitotenv.2017.04.153 . Endo, A., Tsurita, I., Burnett, K., Orencio, P.M., 2015. A review of the current state of research on the water, energy, and food nexus. J. Hydr.Reg.Stud. 7 5806–30. Falzon J., 2013. Sustainable management of the main two Maltese indigenous grape varieties for winemaking. Masters Theses. 200. James Madison University, Harrisonburg, Virginia. Gleeson, T., Wada, Y., Bierkens, M.F.P., and van Beek, L.P.H. 2012. Water balance of global aquifers revealed by groundwater footprint. Nature, 488 7410: 197–200. doi:10.1038/nature11295. PMID:22874965. Giorgi, F., and Lionello, P. 2008. Climate change projections for the Mediterranean region. Global Planet. Change, 63: 90–104. doi:10.1016/j.gloplacha.2007.09.005. Godfrey, S., Labhasetwar, P., Wate, S., 2009. Greywater reuse in residential school in Madhya Pradesh, India a case study of cost–benefit analysis. Resour Conserv Recycl; 53, 287–93 Green, T.R., 2016. Linking climate change and groundwater. In Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.D., & Ross, A. (Eds.), Integrated groundwater management – Concepts, approaches and challenges, 97–141 pp. DOI 10.1007/978-3-319-23576-9_5. Itsubo, N., Inaba, A. LIME2: Life-Cycle Impact Assessment Method Based on Endpoint Modeling Chapter 2: Characterization and Damage Evaluation Methods. JLCA Newsletter No.18. 2014. Available online: http://lcaforum.org/english/pdf/No18_Chapter2.10-2.13.pdf (accessed on 15 June 2018). Jackson, R. S., 2000. Wine science: Principles, practice, perception Academic Press. Jones, G.V., Webb L.B., 2010. Climate change, viticulture, and wine: challenges and opportunities. J. Wine Res. 21, 103–106. James, L.G., Erpenbeck, J.M., Bassett, D.L. and Middleton, J.E., 1982. Irrigation requirements for Washington - estimates and methodology. Research Bulletin XB 0925. Agricultural Research Center, Washington State University, Pullman, WA, 37 pp. Kaenchan, P., Guinée, J., Gheewala, S.H., 2018. Assessment of ecosystem productivity damage due to land use. Sci. Total Environ. 621, 1320–1329. Layard, R., Glaister, S., 1994. Cost-benefit analysis, Cambridge Uni¬versity Press. R.G. Laurenson S., Bolan N. S., Smith E., McCarthy M., 2012. Review: use of recycled wastewater for irrigating grapevines. Aus. J. Grape Wine Res. 18 1–10. 10.1111/j.1755 0238.2011.00170.x Loomis, J., 2002. Quantifying recreation use values from removing dams and restoring free-flowing rivers: a contingent behavior travel cost demand model for the lower snake river. Water Resour Res 38 2, 1–2-8. Luisetti, T., Turner, R.K., Jickells, T., Andrews, J., Elliott, M., Schaafsma, M., Beaumont, N., Malcolm, S., Burdon, D., Adams, C., Watts, W., 2014. Coastal zone ecosystem services: from science to values and decision making; a case study. Sci. Total Environ. 493, 682–693 Maliva, G.R., 2014. Economics of managed aquifer recharge, Water, 6 1257–1279. Maas, E.V., Hoffman, G.J., 1977. Crop salt tolerance, current assessment. J. Irrig. Drain. Div. ASCE 103, 115-134. MCCAA, 2013. Malta's national action plan for sustainable use of pesticides 2013 - 2018. (National Action Plan). Malta: Malta Competition and Consumer Affairs Authority. Mira de Orduña R., 2010. Climate change associated effects on grape and wine quality and production. Food Res. Int. 43 1844–1855. 10.1016/j.foodres.2010.05.001 Molinos-Senante, M., Hernandez-Sancho, F., Sala-Garrido, R., 2010. Economic feasibility study for wastewater treatment: a cost-benefit analysis. The Science of the Total Environment 408, 4396-4402. Mosse, K. P. M., Lee J., Leachman, B. T., Parikh S. J., Cavagnaro, T. R., Patti, A. F., 2013. Irrigation of an established vineyard with winery cleaning agent solution (simulated winery wastewater): vine growth, berry quality, and soil chemistry. Agric. Water Manage. 123 93–102. 10.1016/j.agwat.2013.02.008 MRRA, 2012. The maltese wine sector: A focus on quality wines. (Green Paper). Malta: Ministry for Resources and Rural Affairs, Government of Malta. Can be retrieved from: https://msdec.gov.mt/en/Documents/Downloads/01_Green_Paper_wine_sector_2012.pdf Netzer Y., Shenker, M., Schwartz, A., 2014. Effects of irrigation using treated wastewater on table grape vineyards: dynamics of sodium accumulation in soil and plant. Irrig. Sci. 32 283–294. 10.1007/s00271-014-0430-8 OECD, 2018. Exchange rates (indicator). doi: 10.1787/037ed317-en (Accessed on 31 May 2018) Olesen, J.E., and Bindi M., 2002. Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy 16, 239–262. Olivieri, A.W., Sollera, J.A., Olivieri, K.J., Goebel, R.P., Tchobanoglous, G., 2005. Seasonal tertiary wastewater treatment in California: an analysis of public health benefits and costs, Water Res. 39, 3035–3043, http://dx.doi.org/10.1016/j.watres.2005. 05.010. Panagopoulos, G.P., 2014. Assessing the impacts of socio-economic and hydrological factors on urban water demand: A multivariate statistical approach. J Hydrol 518: 42-48. https://doi.org/10.1016/j.jhydrol.2013.10.036 Pedley, H.M., House, M.R., Waugh, B., 1976. The geology of Malta and Gozo. Proc. Geol. Assoc. 87, 325-341. Ross S.A., Westerfield, R., Jordan, B.D., 2017. Essentials of corporate finance. 9th ed. Irwin: Mcgraw-Hill Sales, J., Tamoh, K., López, J., Galooul, N., Candela, L., 2017. Controlling seawater intrusion by treated wastewater recharge. Numerical modelling and cost-benefit analysis (CBA) at Korba case study (Cap Bon, Tunisia). Desalination and water treatment., vol. 76, 184-195. Sapiano, M., Schembri, M, & Brincat, C, 2013. Assessing the environmental impact of artificial recharge by highly polished treated effluent on an unconfined aquifer system. Malta: Water Policy Unit, Ministry for Energy and the Conservation of Water. Palermo. Can be retrieved from: http://www.mediwat.eu/sites/default/files/D.1.1.6.pdf Schembri, P. J., 1993. Physical geography and ecology of the maltese islands: A brief overview. Malta: Food, Agriculture, Fisheries and the Environment. (Options Méditerranéennes Ser.B: Etudes Et Recherches 7, 27-39. Seguí, L., Alfranca, O., García, J., 2009. Techno-economical evaluation of water reuse for wetland restoration: a case study in a natural park on Catalonia, Northeastern Spain. Desalination; 246, 179 –89. Stuart, M.E., Maurice, L., Heaton, T.H.E., Sapiano, M., Micallef, S.M., Gooddy, D.C. Chilton P.J., 2010. Groundwater residence time and movement in the Maltese islands – A geochemical approach. Appl. Geochem. 25, 609–620. UNECE, 2011. Second Assessment of Transboundary Rivers, Lakes and Groundwaters. Economic Commission for Europe. Convention on the Protection and Use of Transboundary Watercourses and International Lakes. ECE/MP.WAT/33. www.unece.org/?id=26343 US NIC., 2012. United States National Intelligence Council Global Trends 2030: Alternative Worlds. US NIC, Washington DC, USA. 137. Vella, S., 2001. Soil information in the Maltese Islands. In: Zdruli, P., Steduto, P., Montanarella, L. (Eds.), Soil Resources of Southern and Eastern Mediterranean. Options Méditerranéennes, Série B 34, 171-191. World Bank. Data: Agriculture and rural development, 2013. Retrieved September: https://www.tni.org/files/publication-downloads/developmentreport22final_0.pdf WEF, 2011. World Economic Forum. Water Security: The Water–Food–Energy– Climate Nexus. World Economic Forum, Washington DC. Can be retrieved from: http://www3.weforum.org/docs/WEF_WI_WaterSecurity_WaterFoodEnergyClimateNexus_2011.pdf WWAP, 2012. The World Water Development Report (WWDR4), Managing Water Under Uncertainty and Risk. A UNESCO Publication. fourth edition. http://www.unesco.org/new/en/natural sciences/environment/water/wwap/wwdr/wwdr4-2012 Zhang, X., Walker, R.R., Stevens, R. M. and Prior, l. D. 2002. Yield‐salinity relationships of different grapevine (Vitis vinifera L.) scion‐rootstock combinations. Australian Journal of Grape and Wine Research, 8: 150-156. doi:10.1111/j.1755-0238.2002.tb00250.x |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/92268 |